Cambridge International AS \& A Level

You must answer on the question paper.
No additional materials are needed.

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You may use a calculator.
- You should show all your working, use appropriate units and use an appropriate number of significant figures.

INFORMATION

- The total mark for this paper is 30 .
- The number of marks for each question or part question is shown in brackets [].

1 Brass is an alloy of copper and zinc. Typical copper concentrations vary from 50% to 85%, depending upon the properties needed in the alloy. There may be small amounts of other metals present.

A student found a method to determine the percentage of copper in a sample of brass.
A known mass of brass powder is reacted with excess concentrated nitric acid. Both the copper and the zinc and any other metals present are oxidised into aqueous ions by the nitric acid. The amount of $\mathrm{Cu}^{2+}(\mathrm{aq})$ ions present can be determined by a titration technique.
step 1 Use a weighing boat to accurately weigh by difference approximately 2 g of brass powder and place the brass into a small glass beaker.
step 2 In a fume cupboard add approximately $20 \mathrm{~cm}^{3}$ of concentrated nitric acid to the brass in the beaker. Allow the brass to completely react to form solution A.

The equation for the reaction is shown.

$$
\mathrm{Cu}(\mathrm{~s})+4 \mathrm{HNO}_{3}(\mathrm{aq}) \rightarrow \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+2 \mathrm{NO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

step 3 Dilute all of solution \mathbf{A} to form exactly $250.0 \mathrm{~cm}^{3}$ of solution \mathbf{B}.
step 4 Place $25.00 \mathrm{~cm}^{3}$ of solution B into a conical flask.
step 5 Use a dropping pipette to add aqueous sodium carbonate, $\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq})$, to solution \mathbf{B} in the conical flask until there is no more acid present.
step 6 Add approximately $20 \mathrm{~cm}^{3}$ of aqueous potassium iodide, $\mathrm{KI}(\mathrm{aq})$, to the conical flask. A white precipitate forms as well as a brown solution of aqueous iodine, $\mathrm{I}_{2}(\mathrm{aq})$.
step 7 Fill a burette with 0.100 moldm ${ }^{-3}$ sodium thiosulfate solution, $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(\mathrm{aq})$, so it is ready for the titration in step 8.
step 8 Carry out a titration of the aqueous iodine produced in the conical flask against the $0.100 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(\mathrm{aq})$.
(a) Outline how the student should accurately weigh by difference in step 1 in order that the exact mass of brass transferred into the small glass beaker is known. Include a results table, with appropriate headings, ready for the student to fill in.
\qquad
\qquad
\qquad
(b) Suggest why it is necessary to do step 2 in a fume cupboard.
\qquad
(c) Outline how the student should carry out step 3. Include the name and capacity of the suitable piece of apparatus in which solution B should be prepared.
\qquad
\qquad
\qquad
\qquad
(d) Name the apparatus needed to transfer solution B into the conical flask in step 4.
\qquad
(e) State how the student would know there was no more acid present in the mixture in step 5.
\qquad
(f) The student is given $200 \mathrm{~cm}^{3}$ of $0.100 \mathrm{moldm}^{-3} \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(\mathrm{aq})$.

Outline how the student should use this solution to fill the burette in step 7 so it is ready for titration. Include any relevant procedures the student should follow to ensure the burette is correctly filled before any readings are taken.
\qquad
\qquad
\qquad
\qquad
(g) The titration table the student used is shown.
(i) Complete the table and calculate the mean titre to be used in calculating the percentage of copper in brass.
Show your working.

titration number	rough	1	2	3	
final burette reading $/ \mathrm{cm}^{3}$	20.50	40.25	19.90	39.65	
initial burette reading $/ \mathrm{cm}^{3}$	0.00	20.60	0.00	19.90	
titre $/ \mathrm{cm}^{3}$					

mean titre $=$ \qquad cm^{3} [2]
(ii) The burette used by the student has graduations of $0.10 \mathrm{~cm}^{3}$.

Determine the percentage error in the titre measured in titration number 2.
Show your working.
percentage error $=$
[1]
(iii) Other than a change in apparatus, suggest one change to the experiment which would lead to a reduction in the percentage error in a measured titre.
\qquad
\qquad
(h) Steps 1-8 were repeated, this time using 1.88 g of brass. The end-point of the titration was found to be $16.50 \mathrm{~cm}^{3}$.

The equations for the reactions occurring are shown.

```
equation 1 2Cu'2+(aq) + 4I-(aq) -> 2CuI(s) + I (aq)
(step 6)
equation 2 I I (aq) + 2S 2 OO3 '-(aq) -> 2I-(aq) + S S4O6 (a-(aq)
(step 8)
```

(i) Determine the number of moles of I_{2} formed when excess $\mathrm{KI}(\mathrm{aq})$ was added to $25.00 \mathrm{~cm}^{3}$ of solution B in step 6.

Use the data from the repeated experiment in your calculations.
moles of $I_{2}=$
(ii) Use your answer to (h)(i) to determine the mass of Cu^{2+} ions in solution \mathbf{A} and therefore the percentage by mass of copper in this sample of brass.
If you were unable to obtain an answer to (h)(i), assume the number of moles of I_{2} to be $8.85 \times 10^{-4} \mathrm{~mol}$. This is not the correct value.
[$A_{\mathrm{r}}: \mathrm{Cu}, 63.5$]
percentage by mass of copper in the sample of brass =
(i) A small percentage of silver is sometimes found in some brass alloys.

In step 2, when concentrated nitric acid is added, silver metal is oxidised to silver ions, $\mathrm{Ag}^{+}(\mathrm{aq})$.
At the end of step 6 the $\mathrm{Ag}^{+}(\mathrm{aq})$ ions no longer remain in solution.
Explain why.
\qquad

2 The activation energy, E_{a}, of the reaction between aqueous manganate(VII) ions, $\mathrm{MnO}_{4}{ }^{-}(\mathrm{aq})$, and aqueous ethanedioate ions, $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}(\mathrm{aq})$, can be determined as follows.
step 1 Use a pipette to transfer $10.00 \mathrm{~cm}^{3}$ of $0.0200 \mathrm{moldm}^{-3} \mathrm{MnO}_{4}^{-}(\mathrm{aq})$ into a boiling tube.
step 2 Use a second pipette to transfer $10.00 \mathrm{~cm}^{3}$ of $0.0500 \mathrm{moldm}^{-3} \mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}(\mathrm{aq})$ into a second boiling tube.
step 3 Place both boiling tubes into a water-bath at approximately $50^{\circ} \mathrm{C}$ and allow the temperature of both solutions to become equal and constant.
step 4 Record this constant temperature.
step 5 Pour the $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}(\mathrm{aq})$ solution into the boiling tube containing the $\mathrm{MnO}_{4}{ }^{-}(\mathrm{aq})$ solution and immediately start the timer. Continue to stir the mixture during the reaction.
step 6 When the reaction finishes, stop the timer and record the time.
step 7 Repeat the experiment at different temperatures and record the results.
The student used their recorded data to complete columns 1-3 of the table.

experiment number	average temperature of reaction mixture (T) $/ \mathrm{K}$	$\operatorname{time}(t) / \mathrm{s}$	$\frac{1}{T} / \mathrm{K}^{-1}$	$\log t$
1	333	11		
2	323	35		
3	315	76		
4	310	284		
5	304			

(a) An extra procedural step in the method is required in order to be able to calculate the average temperature of the reaction mixture throughout each experiment.

State the extra procedural step that needs to be done.
\qquad
(b) Complete the empty columns in the table, giving all values to three significant figures.
(c) Suggest why an experiment with an average temperature of $70^{\circ} \mathrm{C}(343 \mathrm{~K})$ would produce a result that is less accurate than the other experiments.
\qquad
(d) Identify the dependent variable.
\qquad
(e) Plot a graph on the grid to show the relationship between $\log t$ and $\frac{1}{T}$. Use a cross (x) to plot each data point. Draw a line of best fit.

[2]
(f) The equation for the line of best fit is shown.

$$
\log t=\frac{E_{\mathrm{a}}}{2.303 R T}+\text { constant }
$$

$R=8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$

(i) Use your graph to determine the gradient of the line of best fit.

State the coordinates of both points you used in your calculation. These must be selected from your line of best fit.

Give the gradient to three significant figures.
coordinates 1
coordinates 2 \qquad
gradient =
(ii) Determine the activation energy, E_{a}, of this reaction.

Give your answer to three significant figures. Include units.

$$
\begin{aligned}
& E_{a}= \\
& \text { units }= \\
& \text { [Total: 11] }
\end{aligned}
$$

[^0]
[^0]: Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

 To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

 Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

