

CAMBRIDGE INTERNATIONAL EXAMINATIONS Cambridge International Advanced Level

MARK SCHEME for the May/June 2015 series

9280 MATHEMATICS (US)

9280/51

Paper 5 (Paper 5), maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Mark Scheme Cambridge International A Level – May/June 2015

Mark Scheme Notes

Marks are of the following three types:

- www.papaCambridge.com Μ Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- Mark for a correct result or statement independent of method marks. В
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol $\sqrt[4]{}$ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- B2 or A2 means that the candidate can earn 2 or 0. Note: B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Sy. A
	Cambridge International A Level – May/June 2015	928 2

voer

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF Any Equivalent Form (of answer is equally acceptable)
- Cambridge.com AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only – often written by a "fortuitous" answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through 🖑 marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy. An MR-2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

	NY I					
Page 4	Mark Schen Cambridge International A Le		/June	Sy. An per 2015 970 Phace		
1	$EE(B) = \frac{\lambda \times 0.5^2}{2 \times 0.7} \left[= \frac{5\lambda}{28} \right]$ $OR EE = \frac{\lambda \times 0.2^2}{2 \times 0.7} \left[= \frac{\lambda}{35} \right]$	B1		Syl.per2015970Orrect EE when AP = 1.2 m Correct EE when AP = 0.9 m		
	$\frac{\Lambda \times 0.5^2}{2 \times 0.7} - \frac{\lambda \times 0.2^2}{2 \times 0.7} = \frac{0.3 \times 4^2}{2}$ $\lambda = 16 \mathrm{N}$	M1	[3]	Using EE loss = KE gain		
2 (i)	$\frac{dy}{dx} = 1.2 - 2(0.15x) = 0$	M1		Solving trajectory derivative = 0		
	<i>y</i> = 2.4 OR	A1	[2]	From $x = 4$		
	Greatest height at half range (ii)	M1		Uses $y = 1.2x - 0.15 x^2$ with $x =$ distance in (ii) $\div 2$		
	<i>y</i> = 2.4	A1				
(ii)	Twice 'x' for greatest height	M1		Using 'x' from (i)		
	Distance = 8 m	A1	[2]	No ft		
	OR					
	$1.2x - 0.15 x^2 = 0$	M1		Solves quadratic with $y = 0$		
	Distance = 8 m	A1				
3 (i)	$T\sin\theta = m\omega^2r$	M1		Newton's 2nd law, acceleration = $5^2 r$ and component of <i>T</i>		
	$3\omega\sin\theta = \left(\frac{\omega}{g}\right)5^2 (L\sin\theta)$	A1		$3mg\sin\theta = m 5^2 (L\sin\theta)$		
	$L = 1.2 \mathrm{m}$ AG	A1	[3]			
(ii)	$3\omega\cos\theta = \omega$	M1		Resolves vertically for P		
	$\theta = 70.53^{\circ}$	A1		OR $\theta = \cos^{-1}\left(\frac{1}{3}\right)$,		
				$\theta = \sin^{-1} \sqrt{\frac{8}{9}}$ etc.		
	$v = 5 \times 1.2 \sin \theta$	M1		$v = \omega r$		
	$v = 5.66 \text{ ms}^{-1}$	A1	[4]			

					Mary Contraction of the second
Ра	ge 5	Mark Schem Cambridge International A Lev		/ lune	Syl Part per 2015 970 970
				June	2013 370 37
4	(i)	$x' = 15\cos 30$ (= 12.990)	B1		AB4
		$y' = 15\sin 30 - 3g(= -22.5)$	B1		Or with signs reversed
		$v^{2} = (15\cos 30)^{2} + (15\sin 30 - 3g)^{2} \text{ or}$ $\tan \theta = \frac{3g - 15\sin 30}{15\cos 30}$	M1		Syl oper 2015 970 Phy cer 2015 Or with signs reversed
		v = 26(.0) ms ⁻¹	A1		
		$\theta = 60^{\circ}$ to the horizontal	A1	[5]	Or 30° to the vertical
	(ii)	$y = 3(15\sin 30) - \frac{3^2 g}{2}$	M1		Uses $s = ut + \frac{1}{2}at^2$
		Height = 22.5 m	A1	[2]	N.B. this is also <i>y</i> '
		OR			
		$(-22.5)^2 = (15\sin 30)^2 - 2 \times 10y$	M1		Uses $v^2 = u^2 + 2as$
		Height = 22.5 m	A1		
5	(i)	$0.3g = \frac{18e}{0.9}$	M1		Uses T = $\frac{\lambda x}{l}$
		e = 0.15 m	A1	[2]	
	(ii) (a)	$12 = \frac{18\text{ext}}{0.9}$ and $ht = 3 - 0.9 - \text{ext}$	M1		Both ideas needed, $ext = 0.6$
		<i>ht</i> = 1.5 m	A1	[2]	
	(ii) (b)	$\frac{\frac{0.3 \times 6^2}{2} - \frac{0.3u^2}{2} + 0.3g(0.6 - 0.15)}{\frac{18 \times 0.6^2}{2 \times 0.9} - \frac{18 \times 0.15^2}{2 \times 0.9}}$	M1 A1		KE/PE/EE balance up to string breaking
		$\left(\frac{0.3u^2}{2} = 3.375\right)$			$u^2 = 22.5$
		$0.3v^{2} = 0.3u^{2} + 0.3g(3 - 0.6 - 0.9)$ OR $v^{2} = u^{2} + 2g(3 - 0.6 - 0.9)$	M1		KE/PE balance after string breaks or $v^2 = u^2 + 2g(ht)$ using ht from (ii)(a)
		$v = 7.25 \text{ ms}^{-1}$	A1	4	7.2456
6	(i)	$0.1v \frac{\mathrm{d}v}{\mathrm{d}x} = -0.2 \ e^{-x}$ $v \frac{\mathrm{d}v}{\mathrm{d}x} = -2e^{-x}$	M1		Newton's 2nd law, 1 force Must have negative coefficient
		k = -2	A1*	[2]	

Page 6 Mark Scheme Sy						
Page 6 Mark Scheme Syl Cambridge International A Level – May/June 2015 970 970						
(ii)	$\int v \mathrm{d}v = \int -2e^{-x} \mathrm{d}x$	M1		Integrates Phytogram		
	$\frac{v^2}{2} = 2e^{-x} (+c)$	D*A1		Syl oer 2015 970 Integrates Needs first A1 in (i)		
	$c = \left(\frac{2.2^2}{2} - 2e^0\right) = 0.42$	M1		Or uses limits of 2 and 2.2 for v and x and 0 for x		
	$\frac{2^2}{2} = 2 e^{-x} + 0.42$ x = 0.236	A1	[4]			
(iii)	$\frac{v^2}{2} = 2 e^{-\infty} + 0.42$	M1		OR finds <i>x</i> when $v = 0.9165$		
	$v = 0.917 \text{ ms}^{-1}$ AG	A1	[2]	No solution when $v = 0.917$		
7 (i)	$d(0.6 \times 0.8 + 0.6^2) = 0.4(0.6 \times 0.8) - (0.6/3) \times 0.6^2$	M1 A1		Moments about BAD		
	<i>d</i> = 0.143 m	A1	[3]	Exact 1/7		
(ii) (a)	$21 \times 0.143 = 1.2 P$	M1		Moments about B		
	P = 2.5(0)	A1	[2]			
(ii) (b)	$F_r = 21\sin 45 - 2.5\cos 45$ and $R = 21\cos 45 + 2.5\sin 45$	B1				
		M1		For using $F_r = \mu R$		
	$\mu = 0.787$	A1	[3]			
(iii)	$P \times 0.6 = 21 \times (0.143 + 0.6)$	M1		Moments about C		
	P = 26(.0)	A1				
	Required $F_r = 26\sin 45 - 21\sin 45$	M1		3.5355		
	Max $F_r = 26(.155)$	A1		$0.787 \times (26\cos 45 + 21\cos 45)$		
	As actual $F_r < \max F_r$, no sliding	A1	[5]			