MARK SCHEME for the October/November 2008 question paper

5070 CHEMISTRY

5070/02

Paper 2 (Theory), maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2008 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

UNIVERSITY of CAMBRIDGE International Examinations

	Page 2			Mark Scheme Syllabus F GCE O LEVEL – October/November 2008 5070					
					10er 2008	5070	02		
			_	Section A					
A1	(a)	(i)	Р				[1]		
	((ii)	He				[1]		
	(i	iii)	Cl				[1]		
	(i	iv)	N/P/	As			[1]		
	((v)	Ni				[1]		
	()	vi)		d O (both needed for 1 mark) DW: N and O (1 mark)			[1]		
							[Total: 6]		
		dee ALL ALL IGN	OW: per blac OW: OW: OW: brigh	on dioxide disappears or vaporises carbon dioxide melts/carbon dioxide bl c powder/black solid formed/black smu black gas/black smoke e powder/white solid formed/white fume white gas t light/flame flame colour reyish fumes/solid/powder/gas = 2 mar	ts/black fumes/s		ock gets [2]		
				g reacting with air (or oxygen)/to stop s stop oxidation of magnesium/to increas			in [1]		
				erature/the cold(ness)/it is cold/it is –60 face area/temperature	D°C		[1]		
		2 g 33.7 OR mol 810 corr 1 m 2 m ALL 33.7	\rightarrow 81 75 (k. es M \times 0.0 rect a ark fo ark fo arks .OW: 7/34.0	→ 810 kJ $0 \times 2/(2 \times 24) =$) g = 2/24 = 0.083333 83333/2 = 33.75 inswer without working scores 2 in use of moles i.e. 2/24 or 2 × 24 for correct answer 33.8/34 /33.6 (from rounding up 0.083333) = 1 mark ONLY	mark ONLY		[2]		

	Page 3							-			Paper				
				(GCE O	LEVEL	. – Octo	ober/N	lovemb	er 200)8	5	070	02	
	(e)	• N • 2 (OR 2 so 6 g	Mg 6 2 mo (1 m 2 × 24 g ma	6/24 = bles M bark) 4 g m agnes	agnesiu sium giv	in CO_{2} ed to 1 $Um \rightarrow 4$ res 6 × c	² 4.4/44 of CO ₂ I4 g car 44/48 =	k = 0.1 /recog bon di 5.5 g	mol (1 i nition c oxide (1 carbon	of this/c I mark dioxid) e (1 m			itio shown	[2]
	(f)	energy taken in to break bonds and energy given out in making bonds/ bond-breaking is endothermic and bond-making exothermic more energy released than absorbed [2 more energy released in bond-making than absorbed in bond-breaking ORA = 2 marks [Total: 10]							[2] : 10]						
A3	(a)	meth carbo			e/CO ₂										[2]
	(b)	ALLC	OW:	cond	re of bu ensed s atoms	structur	al formu		nixture	of con	dense	d and d	isplayed	formulae	[1]
	(c)	A A A	ALLC ALLC ALLC	DW: r DW: r DW: r	o the rea educes educes nakes c nges/alt	time ta activat il quick	tion ene ker	ergy	action	(to con	nplete)				[1]
		(ii) (C22H	22 0 2 ·	+ 26½C	$D_2 \rightarrow 2$	22CO ₂ +	⊦ 11H₂	0						
		с (or mı (1 for	ultiple r corr		ctants a	and prod	ducts,	1 for ba	alance)					[2]
														[Tota	al: 6]
Α4	(a)	 potassium chlorate is oxidant and P is reductant (1 mark) ALLOW: oxygen/chlorine is oxidant and P is reductant one of: potassium chlorate loses oxygen/ phosphorus removes oxygen from potassium chlorate/ phosphorus gains oxygen/ potassium chlorate/chlorine/chlorate gains electrons/ phosphorus loses electrons/ oxidation number of phosphorus increases oxidation number of chlorine (ALLOW: of potassium chlorate) decreases ALLOW: increases/decreases in oxidation numbers in correct direction (numbers need not 					ot [2]								

age	4	Mark Scheme	Syllabus	Paper
		GCE O LEVEL – October/November 2008	5070	02
) (i)	ALL	OW: multiples		[1]
(ii)		.		[2]
•				[1]
				[Total: 6]
) (i)				[1]
(ii)	ALL wate NOT	OW: it is alkaline/an alkali (in solution)/has a high pH (ver)/forms hydroxide ions (when reacts with water) F: it contains hydroxide ions	when it reacts wit	[1] h
) (i)				[1]
(ii)	•	pH increases inside beam ORA/ carbon dioxide (in solution) is slightly acidic/ on the surface CO ₂ reacts with neutralises Ca(OH) ₂ C on the surface/ reaction of carbon dioxide with calcium hydroxide red further inside (beam), less (or no) CO ₂ /little or no reac calcium hydroxide inside (beam)/ crack allows carbon dioxide to enter the inside of the	uces alkalinity (o ction (of carbon d	r lowers pH)/
) (i) (ii)) St N() (i) (ii)	ALL IGN (ii) effet turn Sb ₂ S ₃ /S ₃ NOT: St (i) (the NOT (ii) it is ALL wate NOT (ii) CaC IGN (ii) any • •	 GCE O LEVEL - October/November 2008 (i) P₂O₅ + H₂O → 2HPO₃ ALLOW: multiples IGNORE: state symbols (ii) effervescence/bubbling; NOT: carbon dioxide given off turns red/pink Sb₂S₃/S₃Sb₂ NOT: Sb₄S₆ (i) (thermal) decomposition NOT: endothermic (ii) it is (a) basic (oxide)/it is a base/it is (an) alkaline oxide ALLOW: it is alkaline/an alkali (in solution)/has a high pH (water)/forms hydroxide ions (when reacts with water) NOT: it contains hydroxide ions NOT: answers about effect on plant growth (ii) CaO + H₂O → Ca(OH)₂ IGNORE: state symbols (ii) any three of: pH increases inside beam ORA/ carbon dioxide (in solution) is slightly acidic/ on the surface CO₂ reacts with neutralises Ca(OH)₂ C on the surface/ reaction of carbon dioxide with calcium hydroxide red further inside (beam), less (or no) CO₂/little or no reac calcium hydroxide inside (beam)/ crack allows carbon dioxide to enter the inside of the 	GCE O LEVEL - October/November 2008 5070 (i) P ₂ O ₅ + H ₂ O → 2HPO ₃ ALLOW: multiples IGNORE: state symbols (ii) effervescence/bubbling; NOT: carbon dioxide given off turns red/pink (ii) effervescence/bubbling; NOT: carbon dioxide given off turns red/pink 9 Sb ₂ S ₃ /S ₃ Sb ₂ NOT: Sb ₄ S ₆ (iii) tit is (a) basic (oxide)/it is a base/it is (an) alkaline oxide ALLOW: it is alkaline/an alkali (in solution)/has a high pH (when it reacts wit water)/forms hydroxide ions (when reacts with water) NOT: it contains hydroxide ions NOT: answers about effect on plant growth (ii) CaO + H ₂ O → Ca(OH) ₂ IGNORE: state symbols (iii) any three of: • pH increases inside beam ORA/ • carbon dioxide (in solution) is slightly acidic/ • on the surface CO ₂ reacts with neutralises Ca(OH) ₂ OR implication tha on the surface/ • reaction of carbon dioxide with calcium hydroxide reduces alkalinity (o further inside (beam), less (or no) CO ₂ /little or no reaction (of carbon d calcium hydroxide inside (beam)/ • crack allows carbon dioxide to enter the inside of the beam/

Page 5	Mark SchemeSyllabusPaGCE O LEVEL – October/November 200850700			
· · ·	moles HCl = $0.04 \times 18/1000 = 7.2 \times 10^{-4}$ (1 mark for showing $0.04 \times 18/1000$ (or 7.2×10^{-4} without		02	
	2 moles HC $l \equiv 1$ mole Ca(OH) ₂ (or implication of this i.e. 3 (1 mark for indication in any way of correct 2:1 ratio i.e. 3 calculation)	3.6 × 10 ⁻⁴)	er to 1 st part of	
	concentration Ca(OH) ₂ = $3.6 \times 10^{-4} \times 1000/25 = 0.0144$ (r correct answer without working = 3 marks apply error carried forward between the parts ALLOW: 0.014 NOT: 0.015 alternatively: $\frac{C_1 \times V_1}{C_2 \times V_2} = \frac{0.04 \times 18}{C_2 \times 25}$ (1 mark) $\frac{C_1 \times V_1}{C_2 \times V_2} = \frac{n_1}{n_2} \frac{0.04 \times 18}{C_2 \times 25} = \frac{2}{1}$ (2 marks)	nol/dm³)	[3]	
	Correct answer from this = (3rd mark)		[Total: 9]	
			[1014.10]	
	to kill bacteria/to kill micro-organisms/to kill germs ALLOW: to disinfect the water/to sterilise the water NOT: to kill viruses/to kill algae/to kill bugs NOT: to clean the water/to make the water clear		[1]	
	sulphur dioxide/sulphite(s)/named sulphite ALLOW: (calcium) hypochlorite//chlorate(I)/hydrogen perc ALLOW: correct formulae NOT: bleaching powder	oxide	[1]	
• •	or more units polymerised with continuation bonds OW: correct structure with brackets, continuation bonds a	nd 'n' at bottom ri	ght [1]	
• NOT ALL	two of: aluminium oxide dissolves (in sodium hydroxide)/aluminiu sodium hydroxide)/aluminium oxide is soluble (in excess iron(III) oxide does not dissolve (in excess sodium hydrox (in excess sodium hydroxide) f: iron(III) forms a precipitate separate by filtration/allowing iron oxide to settle and draw OW: separate by centrifugation/use a centrifuge R ALL 3 points IGNORE: names of solids/solutions formed	sodium hydroxide kide)/iron(III) oxid ving off solution/d)/ e is insoluble	
lowe ALL ALL	olves the aluminium oxide/alumina or ers melting point of the melt/aluminium oxide mixture OWT OW: lowers the melting point of aluminium oxide OW: lowers the temperature at which electrolysis takes pl f: lowers the temperature (unqualified)		[1]	

Page 6	Mark Scheme	Syllabus	Paper
	GCE O LEVEL – October/November 2008	5070	02

(e) (aluminium) covered with (aluminium) <u>oxide</u> layer/there is (aluminium) <u>oxide</u> on the surface ALLOW: protective layer formed by reaction with oxygen NOT: wrong layer e.g. oxygen layer/layer of nitrogen layer/aluminium oxide is unreactive/layer stops (chemical) reaction/protective layer formed NOT: aluminium is unreactive [2]

[Total: 8]

Page 7	Mark Scheme	Syllabus	Paper
	GCE O LEVEL – October/November 2008	5070	02

Section B

В7	(a)	 reactants on left and products on right and products at lower level than reactants catalysed reaction curve lower than that for uncatalysed ALLOW: two separate diagrams for catalysed and uncatalysed reactions as long as they are 					
		ALL	LOW: two separate diagrams for catalysed and uncatalysed reactions as long as they a he same scale	re			
			halpy change correctly shown in words or as ΔH	[3]			
	(b)	(i)	(fractional) distillation/fractionation/description of this i.e. gradually raising temperature of liquefied air and collecting fractions ALLOW: Linde process/double distillation	[1]			
		(ii)	 any two of: cracking/steam reforming/ high temperature/stated temperature ALLOW: 300–1000 °C/ NOT heat (unqualified) use of catalyst ALLOW: the following specified substances without the word catalyst aluminium oxide zinc oxide/zeolites/copper/silicon dioxide/porous pot/correct symbols of formulae for these ALLOW: the word catalyst with incorrect catalyst e.g. catalyst of copper sulphate 	/ [2]			
	(c)	(i)	increase in pressure increases yield/moves the equilibrium to the right/increases the forward reaction/decreases the back reaction/more products formed/more ammonia formed OWTTE number of moles fewer on right (than left)/number of moles greater on left (than right)/ (gas) volume smaller on right/(gas) volume larger on left/increased pressure favours s with fewer moles or lower volume OWTTE				
		(ii)	decreases yield/moves the equilibrium to the left/more reactants/less ammonia formed OWTTE (forward) reaction is exothermic/reaction gives out energy/back reaction is endothermi				

[2]

[Total: 10]

Page 8	Mark Scheme	Syllabus	Paper
	GCE O LEVEL – October/November 2008	5070	02

B8 (a) (i) any two of:

(ii) C₂H₂O₄

• chromatography paper (with bottom of paper) in solvent

ALLOW: diagram showing this with solvent clearly labelled and paper dipping into solvent

ALLOW: named solvent

- spot of mixture put (on line)
- ALLOW: diagram showing this

NOT: diagrams showing original spot/base line below solvent level

- allow solvent to move up paper/pigments are separated as they move (vertically) up the paper
- ALLOW: separated pigments on a diagram vertically aligned

NOT: single pigments originating from different spots on the base line [2]

(ii) distance spot moves ÷ distance of solvent front from base (starting) line
 ALLOW: diagrams
 ALLOW: distance moved by substance ÷ distance moved by solvent
 ALLOW: the ratio of the distance moved by the spot/substance to that moved by the solvent

NOT: the ratio of the distance moved by the solvent to that moved by the spot/substance

- (b) (i) it/X is a reducing agent or it/X gets oxidised or potassium manganate(VII) oxidises X NOT: reference to colour changes NOT: potassium manganate(VII) is an oxidising agent (unqualified)
 - (ii) it/X does not contain a (C=C) double bond/X is saturated
 - (iii) it/X is a weak acid
 ALLOW: X is a weaker acid (than hydrochloric)/X is weak/is not strong compared with hydrochloric acid
 NOT: X is not a strong acid

(c) (i)
$$C = \frac{2.67/12}{0.223} H = \frac{0.220/1}{0.220} O = \frac{7.11/16}{0.444} \frac{(\div \text{ by correct A}_r)}{(\div \text{ by lowest figure})}$$

simplest ratio = CHO₂ (any order) [3]

_ . _

[1]

[Total: 10]

	Page 9			Mark Scheme	Syllabus	Paper
				GCE O LEVEL – October/November 2008	5070	02
B9	(a)	(of el by el ALLC	lectrol ectric OW: c	down/splitting up/decomposition lyte/compound/substance) ity/electric current causing a chemical reaction to occur by an electric cur producing elements (from compounds) by using an electric		[1]
	(b)		ALLO ALLO	m, chloride, hydrogen, hydroxide (ALLOW: hydroxyl) W: Na ⁺ , C <i>l</i> ⁻ , H ⁺ and OH ⁻ W: mixture of symbols and words chlorine ions	(all 4 needed)	[1]
		Ì	IGNO ALLO	$\rightarrow Cl_2 + 2e^-$ RE: state symbols W 2e instead of 2e ⁻ W: $2Cl^ 2e^- \rightarrow Cl_2$		[1]
		۱ ۱	hydro: pH/all	gen ions form hydrogen (gas)/hydrogen ions removed xide/OH⁻ ions (remaining in solution) are alkaline OR kalinity caused by OH⁻ ions hydroxide ions remain in solution (must be a link to p	hydroxide/OH ⁻	ions give high [2]
	(c)	NOT ALLC REJE ions IGNC	: ions DW: io ECT: i canno DRE:	a ions can <u>move</u> a are free ons carry the charge if reference to electrons moving ot move in solid/ions held together (by strong forces) electrons can't move for this mark a not present		[2]
	(d)	/ 	ALLO NOT: (sulph ALLO NOT:	ALLOW: heat/high temperature/boil/warm W: temperature range of 30–200 °C distil huric) acid catalyst/sulphuric acid W: other named mineral acids/hydrogen ion catalyst acid without qualification (otherwise confusion with th catalyst (unqualified)	ne lactic acid)	[2]
			ALLO	ure of lactic acid correct i.e. CH ₃ CHOHCO ₂ C ₂ H ₅ W: RCO ₂ C ₂ H ₅ CT: if OH group altered		[1]
						[Total: 10]

Page 10		Mark Scheme	Syllabus	Paper
		GCE O LEVEL – October/November 2008	5070	02
B10(a)		number = 53 in both isotopes AND electron number 53 as 72 neutrons and I-131 has 78 neutrons (both needed		[2]
(b)	mangar ALLOW solutior ALLOW IGNOR ALLOW	e reagent e.g. (aqueous) chlorine/(aqueous) bromine/nit nate(VII)/(potassium) permanganate/(sodium) dichroma /: correct formulae n turns brown /: solution turns yellow/orange !E: colour of reagents at start /: grey-black <u>crystals</u> or <u>solid/grey crystals</u> or <u>solid</u> /black urple solution/iodine is formed	te/iron(III) ions	m) [2]
(c)	(1 mark	 → Zn²⁺ + 2I⁻ x for formulae, 1 mark for balance) E: state symbols 		[2]
	3 c 2 c 1 c • • AL NC • • • • • • • • • • • • • • • • • •	is is a level of response question: of the following points = 2 marks of the following points = 1 mark or 0 of these points = 0 mark high melting or boiling points/ high density/ form coloured compounds/ LOW: form coloured ions DT: they are coloured/they form coloured solutions form ions with different charges/different valencies/m form complex ions/ catalysis/they (or their compounds) are good catalyst NORE: general metallic properties/hard O_3/O_3Ti_2 DT: Ti_4O_6 $Cl_4 + 2H_2O \rightarrow TiO_2 + 4HCl$		[2] [1]
	AL	LOW: multiples NORE: state symbols		[Total: 10]