

CANDIDATE NAME

Paper 3 (Extended)

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

NS Papa Cambridge Com

May/June 2013 1 hour 15 minutes

*	
0	
7	
З	
7	
∞	
_	
∞	
_	
5	
6	

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

Electronic calculators may be used.

A copy of the Periodic Table is printed on page 16.

You may lose marks if you do not show your working or if you do not use appropriate units.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

This document consists of **14** printed pages and **2** blank pages.

	my
	2
Air is a	mixture of gases. The main constituents are the elements oxygen and nitroge
(a) (i)	mixture of gases. The main constituents are the elements oxygen and nitrogeness. Name another element in air. [1] Give the formula of a compound in unpolluted air.
(ii)	Give the formula of a compound in unpolluted air.
	[1]
(b) Co	mmon pollutants present in air are the oxides of nitrogen and sulfur dioxide.
(i)	How are the oxides of nitrogen formed?
<i>a</i> n	[2]
(ii)	How is sulfur dioxide formed?
	[2]
(iii)	These oxides are largely responsible for acid rain. State two harmful effects of acid rain.
	[2]

1

(c) The percentage of oxygen in air can be determined by the following experiment

The gas syringe contains 50 cm³ of air. The large pile of copper is heated and the air is passed from one gas syringe to the other over the hot copper. The large pile of copper turns black. The gas is allowed to cool and its volume measured.

The small pile of copper is heated and the remaining gas passed over the hot copper. The copper does not turn black. The final volume of gas left in the apparatus is less than 50 cm³.

(i)	Explain why the copper in the large pile turns black.	
(ii)	Why must the gas be allowed to cool before its volume is measured?	
		[1]
(iii)	Explain why the copper in the small pile did not turn black.	
		[1]
(iv)	What is the approximate volume of the gas left in the apparatus?	
		[1]
	[Total	l: 13]

[Turn over

www.PapaCambridge.com 2 (a) The table below gives the number of protons, neutrons and electrons in atoms Complete the table. The first line is given as an example. You will need to use the Periodic Table.

particle	number of protons	number of electrons	number of neutrons	symbol or formula
А	4	4	5	⁹ ₄ Be
В	19	18	20	
С	30	30	35	
D	8	10	8	
Е	31	31	39	

[6]

in now you can determine whether a particle is an atom,	a negative ion or a positive ion.	
[3]		
[Total: 9]		

3 The diagram shows some of the processes which determine the percentage of carbon dioxide in the atmosphere.

- (a) Explain how the following two processes alter the percentage of carbon dioxide in the atmosphere.
 - (i) combustion

	(ii)	respiration			
		[3]			
(b)	Pho	otosynthesis reduces the percentage of carbon dioxide in the atmosphere.			
	(i)	Complete the word equation for photosynthesis.			
		carbon dioxide + water \rightarrow + [2]			
	(ii)	State two essential conditions for the above reaction to occur.			
		[2]			
		[Total: 10]			
-	At present the most important method of manufacturing hydrogen is steam reforming of methane.				
(a)	In t	he first stage of the process, methane reacts with steam at 800 °C.			
		$CH_4(g) + H_2O(g) \rightleftharpoons 3H_2(g) + CO(g)$			
	In t	he second stage of the process, carbon monoxide reacts with steam at 200 °C.			
		$CO(g) + H_2O(g) \rightleftharpoons CO_2(g) + H_2(g)$			
	(i)	Explain why the position of equilibrium in the first reaction is affected by pressure but the position of equilibrium in the second reaction is not.			
		[2]			
	(ii)	Suggest why a high temperature is needed in the first reaction to get a high yield of products but in the second reaction a high yield is obtained at a low temperature.			

4

- **(b)** Two other ways of producing hydrogen are cracking and electrolysis.
 - (i) Hydrogen can be a product of the cracking of long chain alkanes. Complete the equation for the cracking of C₈H₁₈.

$$C_8H_{18} \rightarrow 2..... + H_2$$
 [1]

www.PapaCambridge.com (ii) There are three products of the electrolysis of concentrated aqueous sodium chloride. Hydrogen is one of them.

Write an equation for the electrode reaction which forms hydrogen.

1771
141

(iii) Name the other two products of the electrolysis of concentrated aqueous sodium chloride and give a use of each one.

product use

[4] product use

[Total: 11]

- Many monomer molecules react together to form one molecule of a polymer. This reaction is called polymerisation.
 - (a) The structural formula of the polymer, poly(chloroethene), is given below. This polymer is also known as PVC.

$$\begin{bmatrix}
H & H \\
| & | \\
C & C
\end{bmatrix}$$

$$H & Cl |_{I}$$

(i) A major use of PVC is insulation of electric cables. PVC is a poor conductor of electricity.

Suggest another property which makes it suitable for this use.

[1

(ii) One way of disposing of waste PVC is by burning it. This method has the disadvantage that poisonous gases are formed.

Suggest two poisonous gases which could be formed by the combustion of PVC.

[2]

www.PapaCambridge.com (b) (i) Deduce the structural formula of the monomer from that of the polymer.

structural formula of monomer

[1]

(ii) Deduce the structural formula of the polymer, poly(phenylethene), from the formula of its monomer, phenylethene.

$$C_6H_5$$
 H

structural formula of polymer

[2]

www.PapaCambridge.com (c) The carbohydrate, glucose, polymerises to form the more complex carbohydrate If glucose is represented by

then the structural formula of starch is as drawn below.

How does the polymerisation of glucose differ from that of an alkene such as phenylethene?
[2

[Total: 8]

- 6 Aluminium is an important metal with a wide range of uses.
 - (a) Aluminium is obtained by the electrolysis of aluminium oxide dissolved in molten cryolite.

(i)	Solid aluminium oxide is a poor conductor of electricity. It conducts either	when
	molten or when dissolved in molten cryolite. Explain why.	

												$\Gamma \cap I$

(ii)	Why is a solution	of aluminium	oxide in	molten	cryolite	used	rather	than	molten
	aluminium oxide?								

[1]

		9 Explain why the carbon anodes need to be replaced periodically.
	(iii)	Explain why the carbon anodes need to be replaced periodically.
	(iv)	One reason why graphite is used for the electrodes is that it is a good conductor of electricity. Give another reason.
		[1]
(b)		minium is used to make food containers because it resists corrosion. lain why it is not attacked by the acids in food.
		[2]
(c)	Aluı	minium is used for overhead power (electricity) cables which usually have a steel e.
		aluminium steel core
	(i)	Give two properties of aluminium which make it suitable for this use.
		[2]
	(ii)	Explain why the cables have a steel core.
		[1]
		[Total: 10]

[lotal: 10]

or more simply it can be written as -COO-.

(a) (i) Give the structural formula of the ester ethyl ethanoate.

[1]

www.PapaCambridge.com

(ii) Deduce the name of the ester formed from methanoic acid and butanol.

......[1]

- (b) (i) Which group of naturally occurring compounds contains the ester linkage?
 - (ii) Draw the structural formula of the polyester formed from the following monomers.

HOOCC₆H₄COOH and HOCH₂CH₂OH

You are advised to use the simpler form of the ester linkage.

[3]

(c) Esters can be used as solvents in chromatography. The following shows a chromatography. of plant acids.

An ester was used as the solvent and the chromatogram was sprayed with bromothymol blue.

(i)	Suggest why it was necessary to spray the chromatogram.	
(ii)	Explain what is meant by the $R_{\rm f}$ value of a sample.	[2]
		 [1]

[Turn over

www.PapaCambridge.com (iii) Calculate the $R_{\rm f}$ values of the two samples and use the data in the table to the plant acids.

plant acid	$R_{\rm f}$ value
tartaric acid	0.22
citric acid	0.30
oxalic acid	0.36
malic acid	0.46
succinic acid	0.60

sample 1	R_f =	It is acid.	
sample 2	R_f =	It is acid.	[2]

			[Total: 11]
8	(a)	Def	ine the following
		(i)	the mole
			[1]
		(ii)	the Avogadro constant
			[1]
	(b)		ich two of the following contain the same number of molecules? ow how you arrived at your answer.
			2.0 g of methane, CH ₄
			8.0 g of oxygen, O ₂
			2.0 g of ozone, O ₃
			8.0 g of sulfur dioxide, SO ₂
			[2]

	The state of the s
	g of calcium is added to 3.6 g of water. The following reaction occurs. $ \text{Ca} \ + \ 2\text{H}_2\text{O} \ \rightarrow \ \text{Ca}(\text{OH})_2 \ + \ \text{H}_2 $ the number of moles of Ca =
4.8	g of calcium is added to 3.6 g of water. The following reaction occurs.
	Ca + $2H_2O \rightarrow Ca(OH)_2 + H_2$
(i)	the number of moles of Ca =
	the number of moles of $H_2O = \dots$ [1
(ii)	Which reagent is in excess? Explain your choice.
	[2
(iii)	Calculate the mass of the reagent named in (ii) which remained at the end of the experiment.
	[1

[Total: 8]

BLANK PAGE

www.PapaCambridge.com

BLANK PAGE

www.PapaCambridge.com

The Periodic Table of the Elements **DATA SHEET**

			16	173	
0	4 Helium 2	20 Ne	84 Krypton 36 Krypton 131 Xe Xe Xenon 874 Xenon 874 Xenon 874 Xenon 886 Radon 886 Rado	Lawrendum 103	\
=>		19 Fluorine 9 35.5 C1 Chlorine	80 Br Bromine 35 127 I I A At At At BSS BSS BSS BSS BSS	Y Y b Ytterbium 70 Nobelium 102	CO
>		16 Oxygen 8 32 32 Mfur 16	Seenium 34 Seenium 34 Februard	Tm Thulium 69 Mendelevium 101	
>		Nitrogen 7 31 31 Phosphorus 15	75 Asemic 33 Arsenic 33 Arsenic 35 122 Sb Antimony 51 209 Bi Bismuth 83	167 Erbium 68 Fm Femilum 100	
≥		Carbon 6 Carbon 8 28 Silicon 14	73 Germanium 32 Germanium 32 Tin 119 50 Tin 80 Red 82 Lead	165 Ho Hornlum 67 Es Einsteintum 99 (r.t.p.).	
≡		11 BB Boron 5 27 A1 Aluminium 13	70 Ga 31 115 116 117 204 7 T TRAIllum 81	Dy Dysprosłum 66 Cf Calfornium 98	
			Cadmium 201 48 Marcury 66 Cadmium 80 Hg	Tb Tb Terblum 65 Bk Berkeltum 97	
			64 Cu Copper 108 Ag Silver 197 Au Au 779 Cold	Gd Gadolinium 64 Curium 96	
Group			59 Nickel 28 Nickel 28 Patadum 46 Patadum 195 Pt 19	162 Europium 63 Am Americium 95 m³ at roo	
5		٦	59 Cobalt 27 Cobalt 103 Rhodium 45 I 192 I ridium 777 Cobalt 277 C	Samarium 62 Pu Putonium 94 as is 24 d	
	Hydrogen 1		56 Fe Iron 26 Iron 101 Ru Ruthenium 44 Os Osemum 76	Pm Promethlum 61 Np Neptunium 93	
			Mnanganese 25 Technetium 43 Re Re Rentium 75	Nd Neodymium 60 238 Umnium 92 one mole	
			52 Cr Chromium 24 Mo Moybdenum 42 184 W Tungsten 74	Ce Pr Nd Pm Sm and recoding to the motion Sm and recoding to the motion Former to the motion Sm and recoding to the motion Responsibility Former to the motion Former to the	
			Venadium 23 Nabium 41 181 Ta Ta Ta	140 Certum 58 232 232 Th Thortum 90 The V	
			48 Tritanium 22 27 Str. Str. Str. Str. Str. Str. Str. Str.	↑ omic mass mbol omic) number	
				e atr	
=		Be Beryllium 4 24 NG Magnesium 12	Caecium 20 Caecium 20 Sr 88 Strontium 38 Ba Batum 56	Radium Radium Radium Actinoid X	
_		Lithium 3 23 8 8 8 8 8 8 8 8 8 8 11	Robassium 19 85 Rb Rubidium 37 133 Cs Caesium 55	#Franctum *58-71 L 190-103 Key b	

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.