

CANDIDATE NAME

CENTRE

NUMBER

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

www.PapaCambridge.com

CANDIDATE

NUMBER

-	
٦	
)	
•	
0	
٦	
^	
1	
J	
)	
ر	

CHEMISTRY 0620/22

Paper 2 October/November 2013

1 hour 15 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page. Write in dark blue or black pen.

You may need to use a pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

Electronic calculators may be used.

A copy of the Periodic Table is printed on page 16.

You may lose marks if you do not show your working or if you do not use appropriate units.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

This document consists of 15 printed pages and 1 blank page.

BLANK PAGE

www.PapaCambridge.com

(a) Choose from the list of compounds below to answer the following questions.

www.PapaCambridge.com

ammonia ammonium chloride calcium carbonate calcium oxide copper(II) sulfate ethane iron(II) chloride methane water

Each compound can be used once, more than once or not at all.

Which compound:

	(i)	is an alkaline gas,	[1]
	(ii)	is a gas contributing to climate change,	[1]
	(iii)	is a salt containing only non-metals,	[1]
	(iv)	turns blue cobalt chloride paper pink,	[1]
	(v)	reacts with an acid to release carbon dioxide,	[1]
	(vi)	gives a light blue precipitate when aqueous sodium hydroxide is added to a solut of its aqueous ions?	tion [1]
(b)		at is the meaning of the term compound?	
(c)		mplete the following symbol equation for the complete combustion of methane	in ;
		CH_4 + O_2 \rightarrow + $2H_2O$	[2]

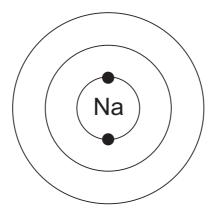
[Total: 9]

(a) The table describes the reactivity of some metals with hydrochloric acid. 2

The table des	4 cribes the reactivity of some metals with hydrochloric acid.	For miner's
metal	observations	Office
calcium	Many bubbles produced. Reaction mixture may boil.	26.C
magnesium	Steady stream of bubbles produced. Reaction mixture gets hot.	
sodium	Many bubbles produced. May explode.	
zinc	Slow stream of bubbles produced. Reaction mixture rises slightly in temperature.	

Put these metals in order of their reactivity.

least reactive		→ m	ost reactive
			[2]


(b) Complete the word equation for the reaction of magnesium with hydrochloric acid.

magnesium	+	hydrochloric acid	\rightarrow	 +	

(c) When magnesium reacts with hydrochloric acid, magnesium atoms lose electrons. What type of magnesium particle is formed? Put a ring around the correct answer.

covalent	ion	molecule	proton	
				[1]

(d) Complete the diagram to show the electronic structure of a sodium atom.

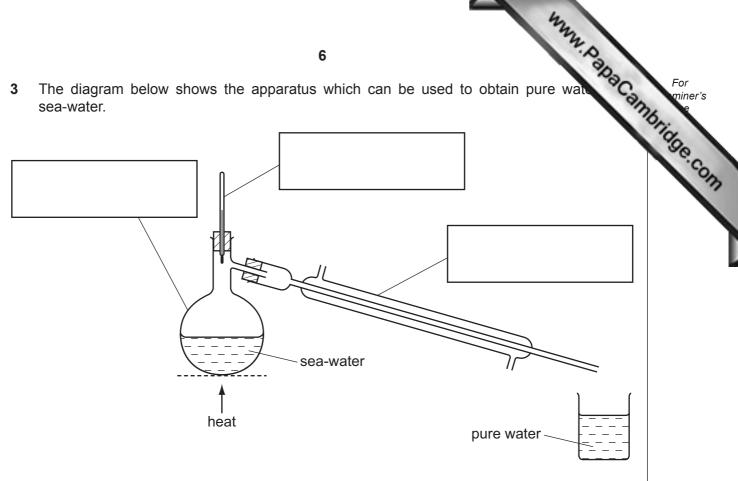
[2]

[2]

www.PapaCambridge.com (e) A student added large lumps of zinc to 20 cm³ of 2 mol/dm³ hydrochloric acid. She carried out the reaction at 15 °C. She measured the volume of gas given off at various time intervals.

(i) Draw a labelled diagram of the apparatus she could use for this experiment.

[3	3]	


(ii) Describe **three** different things she could do to increase the rate of this reaction.

1	 	
2	 	

[Total: 13]

3 The diagram below shows the apparatus which can be used to obtain pure wait sea-water.

((a)	State	the	name	of	this	process.

га:	1
 ĮΊ.	J

- (b) Label the boxes on the diagram above with the correct names of the pieces of apparatus shown. [3]
- (c) Complete the following sentences using words from the list below.

	boils	condenses	cools	freezes	
	higher	lower	melts		
Water	has a	boiling po	int than salt. Wher	n a solution of salt is heated	
strongl	ly, the water	and	l escapes as stear	m. When the steam cools, it	
	back	to liquid water.		[3]	

(d) The table shows the concentration of the seven most abundant compounds in sea

ds in sea Rocannon For miner's

compound	ions present	concentration in g/m³
calcium carbonate	Ca ²⁺ and CO ₃ ²⁻	100
calcium sulfate	Ca ²⁺ and SO ₄ ²⁻	1 800
magnesium chloride	Mg ²⁺ and C <i>l</i> -	6 800
magnesium sulfate		5 700
potassium bromide	K⁺ and Br⁻	100
potassium chloride	K⁺ and C <i>l</i> ⁻	800
sodium chloride	Na⁺ and C <i>l</i> ⁻	28 000

(1)	which negative ion is present in the greatest concentration in sea-water?	
		[1]
(ii)	Which positive ion is present in the lowest concentration in sea-water?	
		[1]
(iii)	Write the formulae of the two ions present in magnesium sulfate.	
		[2
	[Total:	11

[Turn over

(a) Match the compounds on the left with the statements on the right. The first one has been done for you.

ch the compounds on first one has been dor	ements on the right.	For miner's e
butane	a hydrocarbon containing four carbon atoms	Tage COM
poly(ethene)	it decolourises bromine water	
ethene	it is the main constituent of natural gas	
methane	it contains a –COOH functional group	
ethanoic acid	it has a very long chain of carbon atoms	

(b) Methane and ethene are hydrocarbons.

(i) What is meant by the term *hydrocarbon*?

(ii) The structure of ethene is shown below.

$$C = C$$

Use this structure to explain why ethene is an unsaturated hydrocarbon.

(c) Molecules of ethene react together at high temperature and pressure to form poly(ethene).

Which one of the following words best describes the molecules of ethene in this reaction? Put a ring around the correct answer.

> acids alkanes monomers polymers

[1]

[4]

						MANN, PARAC
			9			· Og
(d)	Eth	anoic acid can be made by the	oxidation of ethanol.			AC.
	(i)	What is meant by the term oxid	lation?			
						[1]
	(ii)	Ethanol can be made by ferme Complete the word equation fo				
		yeast			oth on al	
		→		+	ethanol	
						[2]
						[Total: 10]

[Turn over

For miner's

	For		
,	mine	er's	
26	1		
7	2	1	
	Ó		
7		S	
		4	3
	•		
		7	

5	(a)	Explain why metals are often used in the form of alloys.
		In your answer, write about

		The state of the s	
		10	
(a)		lain why metals are often used in the form of alloys. our answer, write about the structure of an alloy,	76.
	•	the structure of an alloy, why alloys are often more useful than pure metals.	1
		[3]	
(b)	Iron	is a transition element.	
	(i)	Which two of the following statements about iron are correct? Tick two boxes.	
		A freshly-cut surface of iron is green in colour.	
		Iron exists in only one oxidation state in its compounds.	
		Iron has a high density.	
		Iron has a giant covalent structure.	
		Iron has a high melting point. [2]	
	(ii)	Describe one method of rust prevention and explain how it works.	
		method	
		how this works	
		[2]	
(c)	Iron	is used as a catalyst in the Haber process for making ammonia.	
(-)		What does the term <i>catalyst</i> mean?	
	()	[1]	
	(ii)	Describe a test for ammonia.	
	- •	test	
		result[2]	
			1

[Turn over

6 (a) Garlic is a vegetable that is often used in cooking. It has a strong smell. A student is cutting up garlic in the kitchen.

After a time,	the	smell	of the	garlic	travels	all	over	the	house	even	though	there	are	no
currents of a	ıir.													

Use the kinetic particle theory to explain why the smell of garlic travels all over the house.

 •	 •	

(b) The smell of garlic is due to a compound containing sulfur. The structure of this compound (compound **A**) is shown below.

$$\label{eq:ch2} \begin{split} \text{CH}_2 &= \text{CH} - \text{CH}_2 - \text{S} - \text{S} - \text{CH}_2 - \text{CH} = \text{CH}_2 \\ &\quad \text{compound } \textbf{A} \end{split}$$

(i) Write the molecular formula for this compound.

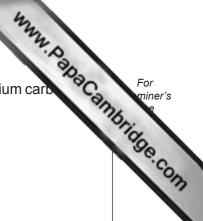
.....[1]

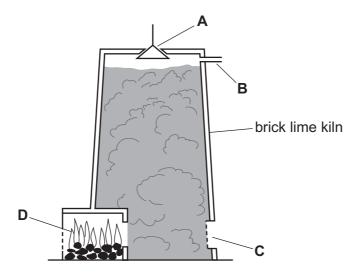
(ii) Another organic sulfur compound (compound B) is shown below.

$$C_2H_5$$
 $C \longrightarrow CH$
 H_2C
 CH_2

compound **B**

By comparing the formulae of compound **A** and compound **B**, how can you tell that compound **A** has the higher relative molecular mass?


You are not required to do any mathematical calculations.


 [2]

		1	13	atomic number of 16.	1
(c) A	n isotope of sulfur			atomic number of 16.	DOC
(i		rons are there in or		otope of sulfur?	
(ii					[1]
	isotope,				
					[1]
	nucleon numbe	r?			[1]
(iii		tain sulfur as a con llowing sentences			
	coal	dioxide	hydrogen	monoxide	
	nitrogen	oxidised	reduced	water	
	Fuels such as	co	ntain sulfur.		
	When these fue	ls burn, the sulfur is	s	to sulfur	
	This reacts with	i	n the atmosphere	to form an acidic solution	. [4]
(iv) Describe and ex	kplain the effect of a	acid rain on buildi	ngs made of limestone.	
					[2]

[Total: 15]

7 The diagram shows a kiln for making lime (calcium oxide) from limestone (calcium carb

	(a)	(i)	Which letter or	n the diagram	above shows
--	-----	-----	-----------------	---------------	-------------

where the limestone is added,

where the waste gases exit from the kiln? [2]

(ii) Complete the symbol equation for the decomposition of limestone.

$$CaCO_3 \rightarrow CaO + \dots$$
 [1]

(iii) When 50 g of calcium carbonate is decomposed, 28 g of calcium oxide is formed. Calculate the minimum mass of calcium carbonate needed to produce 8.4 g of calcium oxide.

[1]

(b) The table below shows the temperatures at which some Group II carbonates decompose.

Group II carbonate	temperature at which Group II carbonates decompose/°C
beryllium carbonate	100
magnesium carbonate	350
calcium carbonate	900

(i) [Describe the patte	n in the ease	of decomposition	of Group II	carbonates
-------	--------------------	---------------	------------------	-------------	------------

 [1	1

	(ii)	Predict the decomposition temperature of barium carbonate.	6.0
		°C	
(c)	Lim	ne is calcium oxide.	
	(i)	State one use of lime.	
			[1]
	(ii)	What type of oxide is calcium oxide?	
			[1]
	(iii)	Calculate the relative formula mass of calcium oxide. Use your Periodic Table to help you.	
			[1]
(d)		cium is extracted from its compounds by electrolysis. ggest why calcium is extracted by electrolysis rather than by reduction with carbon.	
			[1]

[Total: 10]

The Periodic Table of the Elements **DATA SHEET**

				1	6				mm. K	abaCambrio.
0	He Helium	20 Neon 10 40	Ar Argon	84 Kr Krypton 36	131 Xe Xenon 54	Rn Radon 86		175 Lu Lutetium 71	Lr Lawrendum 103	Cambri
		19 Fluorine 9 35.5	Chlorine	80 Br Bromine 35	127 T lodine 53	At Astatine 85		Yb Ytterbium 70	Nobelium	13
5		16 Oxygen 8		79 Se Selenium 34	128 Te Tellurium 52	Po Polonium 84		169 Tm Thulium 69	Md Mendelevium 101	
>		14 Nitrogen 7	P Phosphorus 15	75 AS Arsenic 33	Sb Antimony 51	209 Bi Bismuth		167 Er Erbium 68	Fm Fermium 100	
≥		12 Carbon 6	Silicon	73 Ge Germanium	119 Sn ™	207 Pb Lead 82		165 Ho Holmium 67	Es Einsteinium 99	(r.t.p.).
≡		11 Boron 5	At Aluminium 13	70 Ga Gallium 31	115 In Indium 49	204 T 1 Thallium		162 Dy Dysprosium 66	Cf Californium 98	The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).
				65 Zinc 30	112 Cd Cadmium 48	201 Hg Mercury 80		159 Tb Terbium 65	Bk Berkelium 97	ature and
				64 Cu Copper	108 Ag Silver 47	197 Au Gold 79		157 Gd Gadolinium 64	Cm Curium	n temper
dnoib				59 X Nickel 28	106 Pd Palladium 46	195 Pt Platinum 78		152 Eu Europium 63	Americium 95	m³ at roo
5				59 Co Cobalt	Rhodium 45	192 Ir Iridium		Sm Samarium 62	Pu Plutonium 94	as is 24 d
	T Hydrogen			56 Iron	Ru Ruthenium 44	190 Os Osmium 76		Pm Promethium 61	Neptunium 93	e of any g
				Mn Manganese 25	Tc Technetium 43	186 Re Rhenium 75		Neodymium 60	238 U Uranium 92	one mole
				Cr Chromium 24	96 Mo Molybdenum 42	184 W Tungsten 74		Praseodymium 59	Pa Protactinium 91	olume of
				51 V Vanadium 23	93 Nb Niobium 41	181 Ta Tantalum 73		140 Ce Cerium 58	232 Th Thorium 90	The
				48 T itanium 22	2r Zirconium 40	178 Haf Hafnium	+		 a = relative atomic mass X = atomic symbol b = proton (atomic) number 	
	_			Scandium 21	89 Y	139 Lanthanum 57	Ac Actinium 89	id series series	 a = relative atomic mass x = atomic symbol b = proton (atomic) numb 	
=	-	Be Beryllium 4	Mg Magnesium 12	40 Ca Calcium	Strontium	137 Ba Barium 56	226 Ra Radium 88	*58-71 Lanthanoid series	<i>a</i> ★	
_		Lithium 3	Na Sodium	39 K Potassium 19	Rb Rubidium 37	133 CS Caesium 55	Fr Francium 87	*58-71 190-103	Key	

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.