Cambridge International Examinations Cambridge International General Certificate of Secondary Education | CANDIDATE
NAME | | | | |-------------------|-----------------------------|---------------------|-------------------| | CENTRE
NUMBER | | CANDIDATE
NUMBER | | | CHEMISTRY | | | 0620/21 | | Paper 2 | | | May/June 2015 | | | | | 1 hour 15 minutes | | Candidates ans | swer on the Question Paper. | | | | No Additional N | Materials are required. | | | ## **READ THESE INSTRUCTIONS FIRST** Write your Centre number, candidate number and name in the spaces at the top of this page. Write in dark blue or black pen. You may use an HB pencil for any diagrams or graphs. Do not use staples, paper clips, glue or correction fluid. DO NOT WRITE IN ANY BARCODES. Answer all questions. Electronic calculators may be used. A copy of the Periodic Table is printed on page 16. You may lose marks if you do not show your working or if you do not use appropriate units. At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question. The syllabus is approved for use in England, Wales and Northern Ireland as a Cambridge International Level 1/Level 2 Certificate. 1 The structures of six substances containing carbon are shown below. Answer the following questions about these substances. Each substance may be used once, more than once or not at all. (a) Which substance, A, B, C, D, E or F, (c) Describe a test for substance A. | (1) | is an element, | [1 | |---------------|---|----| | (ii) | is a saturated hydrocarbon, | [1 | | (iii) | is added to the blast furnace to help in the extraction of iron, | [1 | | (iv) | has a giant covalent structure, | [1 | | (v) | is a product of respiration, | [1 | | (vi) | contains a metal ion with 20 protons? | [1 | | (b) Co | mplete the word equation for the thermal decomposition of substance | В. | | | heat
——➤ calcium oxide + | | | | | [2 | | | | | [Total: 10] [2] result **2** A small piece of sodium is added to some ethanol. The temperature was measured before and after the sodium was added. (a) Explain how this experiment shows that the reaction is exothermic.[1] **(b)** Complete the structure of ethanol to show all atoms and bonds. [1] | (c) | Eth | anol can be made by the reaction of steam with ethene. | | |-----|-------|--|-------| | | (i) | Write the word equation for this reaction. | | | | (ii) | What conditions are needed for this reaction? Tick two boxes. | [1] | | | | enzyme catalyst | | | | | high temperature (300 °C) | | | | | low temperature (10 °C) | | | | | phosphoric acid catalyst | | | | | presence of light | [2] | | | (iii) | What will be observed when ethene is bubbled through aqueous bromine? | | | | | | [1] | | (d) | The | panol can also be made by fermentation. The fermentation mixture contains solids as well as an aqueous solution of ethanol. The graph of the ethanol can be purified from this fermentation mixture. | [3] | | | | [Total | l: 9] | 3 The diagram shows the apparatus used for the electrolysis of molten sodium bromide. | (a) | (i) | What does the | term <i>electrolys</i> | sis mean? | | | | |-----|------|--|------------------------|------------------|------------------|------------|-----| | | | | | | | | [1] | | | (ii) | Which letter, R | | | | | | | | | | | | | | [1] | | (b) | Cor | nplete the word | equation for th | e electrolysis | of molten sodiur | n bromide. | | | | | sodium bromi | de → | | + | | [2] | | (c) | A so | olution of sodiun | n bromide in w | ater is neutral. | | | | | | | ich one of the fo
a ring around th | | | | | | | | | pH 0 | рН 6 | pH 7 | pH 10 | pH 14 | [1] | (d) The diagram below shows the arrangement of the particles in sodium bromide at room temperature. | | (i) | Give the name of the type of particles, P , present in sodium bromide. | | |-----|------|---|-----| | | | | [1] | | | (ii) | What is the state of sodium bromide at room temperature? Use the information in the diagram to explain your answer. | | | | | | | | | | | | | | | | [2] | | (e) | Soc | dium bromide can be made by heating sodium in bromine vapour. | | | | Cor | mplete the balanced symbol equation for this reaction. | | | | | Na + → 2NaBr | [2] | | (f) | Bro | omine has two naturally-occurring isotopes. | | | | Wh | at is the meaning of the term isotope? | | | | | | | | | | | [1] | [Total: 11] **4** A student investigated the reaction of magnesium with dilute hydrochloric acid. $$Mg(s) + 2HCl(aq) \rightarrow MgCl_2(aq) + H_2(g)$$ She measured the volume of gas given off at various times during the reaction. (a) Complete the diagram of the apparatus she would use to measure the volume of the gas given off. Label the apparatus. [3] **(b)** The student carried out the reaction at 25 °C using magnesium ribbon. Her results are shown below. (i) How long does it take for the reaction to stop? seconds [1] (ii) What is the volume of hydrogen made after 20 seconds? cm³ [1] - (iii) On the grid above, draw a line to show how the volume of gas changes when the experiment is carried out at 15 °C and all other conditions remain the same. - (iv) The student repeated the experiment using magnesium powder. All other conditions remain the same. How does the rate of reaction with magnesium powder compare with the rate of reaction with magnesium ribbon?[1] | (C) | (1) | braw a diagram to show the electron arrangement in a molecule of hydrogen. | | |-----|------|---|-----| [1] | | | | | | | | (ii) | What type of bonding is present in a hydrogen molecule? | | | | | | [4] | | | | | נין | | | | | | | (d) | Ma | gnesium chloride is a salt. | | | | Ma | gnesium sulfate is also a salt. | | | | Civ | re the name of two compounds which react together to form magnesium sulfate. | | | | Giv | e the hame of two compounds which react together to form magnesium sunate. | | | | | and | [2] | | | | | | | | | [Total: | 12] | | | | | | | | | | | **5** The structure of glycolic acid is shown below. - (a) On the structure above, put a ring around the carboxylic acid functional group. [1] - **(b)** Glycolic acid is prepared by heating a mixture of methanal, carbon monoxide and water with a sulfuric acid catalyst. - (i) The formula of methanal is HCHO. Calculate the relative molecular mass of methanal. | | | | ניו | |-----|-------|--|-----| | | (ii) | What is the function of the catalyst? | | | | | | [1] | | | (iii) | State one adverse effect of carbon monoxide on humans. | | | | | | [1] | | | | | | | (c) | Gly | colic acid can also be prepared by the reduction of oxalic acid. | | | | (i) | What does the term reduction mean? | | | | | | [1] | | | (ii) | Give the name of the reducing agent in the following reaction. | | | | | heat | | | | | $2CuO(s) + C(s) \rightarrow 2Cu(s) + CO_2(g)$ | | name of reducing agent[1] | (d) | | colic acid is found in unripe grapes. pe skins contain a number of different coloured pigments. | |-----|------|---| | | Des | scribe how you could obtain a solution of these pigments from grape skins. | | | | | | | | | | | | | | | | [3] | | (e) | Eth | colic acid can undergo polymerisation. ene can also undergo polymerisation. e equation for the polymerisation of ethene is shown below. | | | | ethene catalyst poly(ethene) high temperature | | | Giv | e the name of the monomer in this equation. | | | | [1] | | (f) | Lon | g chain alkanes can be cracked to produce shorter chain alkanes and alkenes. | | | (i) | What conditions are needed for cracking? | | | | | | | | [2] | | | (ii) | Complete the equation for the cracking of hexadecane, $C_{16}H_{34}$, to form octane, C_8H_{18} , and ethene only. | | | | $C_{16}H_{34} \rightarrow C_8H_{18} + C_2H_4$ | | | | [1] | | | | [Total: 13] | 6 The table shows some physical properties of the metals, A, B, C and D. | metal | electrical
conductivity | density
in g/cm³ | boiling point
/°C | hardness | |-------|----------------------------|---------------------|----------------------|----------| | Α | fairly good | 8.64 | 765 | hard | | В | good | 0.97 | 883 | soft | | С | good | 7.14 | 907 | hard | | D | good | 0.86 | 760 | soft | | (a) | (i) | Which two metals in the table are Group I metals? Give a reason for your answer. | | |-----|------|---|------| | | | | | | | | | [2] | | | (ii) | None of the metals A , B , C or D are transition elements. | | | | | Give two properties of transition elements or their compounds that make them diffe from metals ${\bf A},{\bf B},{\bf C}$ and ${\bf D}.$ | rent | | | | | | | | | | [2] | | (| iii) | Cobalt is a transition element. When it is heated very strongly in steam, hydrogen is given off. | | | | | Complete the symbol equation for this reaction. | | | | | $Co(s) + 4H_2O(g) \rightarrow Co_3O_4(s) + H_2(g)$ | [2] | | (| iv) | Iron is also a transition element. | | | | | Describe how iron is converted to steel. In your answer, refer to basic oxides and oxygen. | [3] | | (b) | When lithium reacts with water it moves about on the surface of the water, bubbles are seen and the lithium disappears slowly. | |-----|--| | | Predict how the reaction of potassium with water compares with the reaction of lithium with water. | In your answer, include | any differences in observations, the names of the products formed when lithium and potassium react with water. | |---| | | | | | | | | | | | | | | | [5] | | [Total: 14] | 7 (a) A student took two identical syringes. He filled one with water and the other with helium gas and sealed the end of both syringes. He then pushed the syringe plungers with equal force. The diagram shows what happened. | Describe and explain these results using ideas about particles in liquids and gases. | |--| | | | | | | | | | | | | | [4] | **(b)** The table shows some properties of the Group 0 elements helium, neon, argon and krypton. | element | electron
arrangement | density of the liquefied gas in g/cm³ | melting point
/°C | boiling point
/°C | |---------|-------------------------|---------------------------------------|----------------------|----------------------| | helium | 2 | 0.15 | -272 | -269 | | neon | | 1.20 | -248 | -245 | | argon | 2,8,8 | 1.40 | -189 | -186 | | krypton | 2,8,18,8 | 2.15 | – 157 | -152 | | (1) | Describe now the density of the liquefied hobie gases changes down Group U. | | |-------|---|-----| | | | [1] | | (ii) | Deduce the electron arrangement of neon. | | | | | [1] | | (iii) | What is the state of argon at -188 °C? | | | | | [1] | | (iv) | Which element in the table has the highest melting point? | | | | | [1] | **(c)** The table below shows the number of electrons, protons and neutrons in some isotopes of helium, argon and neon. Complete the table. | element | number of electrons | number of protons | number of neutrons | |--------------------------------|---------------------|-------------------|--------------------| | ³ He | 2 | 2 | | | ³⁸ ₁₈ Ar | | 18 | 20 | | | 10 | 10 | 11 | [3] [Total: 11] The Periodic Table of the Elements **DATA SHEET** | | | | | | | | | Gro | Group | | | | | | | | | |-----------------|-------------------------|----------------------------|-----------------|------------------|--------------------|--------------------|-----------------|---------------|-----------------|--------------|-----------------|-------------------|---------------|------------------|--------------------|-----------------|------------------| | _ | = | | | | | | | | | | | = | ≥ | > | > | NII N | 0 | | | | | | | | | - | | | | | | | | | | 4 | | | | | | | | | Hydrogen | | | | | | | | | | Felium C | | | | | | | | | | | | | | | | | | | 7 | | _ | 6 | | | | | | | | | | | = | 12 | 14 | 16 | 19 | 20 | | | | | | | | | | | | | | Ω | ပ | Z | 0 | ш | Ne | | Lithium
3 | Beryllium 4 | F | | | | | | | | | | Boron
5 | Carbon
6 | Nitrogen
7 | Oxygen
8 | Fluorine
9 | Neon
10 | | 23 | 24 | | | | | | | | | | | 27 | 28 | 31 | 32 | 35.5 | 40 | | Na | _ | | | | | | | | | | | Αl | S | ۵ | S | Cl | Ā | | Sodium
11 | ≥ 72 | E | | | | | | | | | | Aluminium
13 | Silicon
14 | Phosphorus
15 | | Chlorine
17 | Argon
18 | | 39 | 40 | 45 | 48 | 51 | 52 | | 99 | 59 | | 64 | 65 | 20 | 73 | 75 | | 80 | 84 | | × | Ca | Sc | F | > | ပ် | Mn | Fe | ပိ | | Cn | Zn | Ga | ge | | | | 첫 | | Potassium
19 | m Calcium
20 | n Scandium
21 | Titanium
22 | Vanadium
23 | | ≥ 52 | Iron
26 | Cobalt
27 | | Copper
29 | Zinc
30 | Gallium
31 | Ε | | _ | m | Krypton
36 | | 85 | 88 | 88 | 91 | 93 | 96 | | | | 106 | 108 | 112 | 115 | | | 1 | | 131 | | Rb | | > | Zr | 9N | Mo | ဥ | | | Pd | Ag | င် | 'n | S | Sb | <u>e</u> | н | Xe | | Rubidium
37 | m Strontium
38 | Yttrium
39 | Zirconium
40 | Niobium
41 | Molybdenum
42 | n Technetium
43 | Ruthenium
44 | Rhodium
45 | Palladium
46 | 47 | Cadmium
48 | 49 | | Antimony
51 | Tellurium
52 | lodine
53 | Xenon
54 | | 133 | 137 | 139 | 178 | 181 | 184 | 186 | 190 | | 195 | | 201 | | | 209 | | | | | Cs | Ba | Га | ¥ | Та | > | Re | os | i | Ŧ | Αn | Hg | 11 | Pp | | | At | R | | Caesium
55 | n Barium
56 | Lanthanum
57 | + 72 | Tantalum
73 | Tungsten
74 | Rhenium
75 | Osmium
76 | Iridium
77 | Platinum
78 | Gold
79 | Mercury
80 | Thallium
81 | | Bismuth
83 | Polonium
84 | Astatine
85 | Radon
86 | | ı | 226 | | | | | | | | | | | | | | | | | | <u></u> | | | | | | | | | | | | | | | | | | | Francium
87 | m Radium
88 | Actinium † | | | | | | | | | | | | | | | | | *58-71 | Lanthand | *58-71 Lanthanoid series | | 140 | 141 | 144 | | 150 | 152 | 157 | 159 | 162 | 165 | 167 | 169 | 173 | 175 | | 190-10 | 190-103 Actinoid series | d series | | Cerium | | Neodymium | Pm | Samarium | ۶ | Ε | Tb | 0.6 | Holmium | Erbium | E Thulium | Yb | Lutetium | | | a | a = relative atomic mass | | | 86 | 09 | 19 | - 1 | | - 1 | 65 | | /9 | 200 | | 0/ | 5 | | Xev. | v × | X = atomic symbol | lod | 232
Th | D C | | | P | Am | S | æ | ť | у.
Ц | E | Ž | Q
Z | _ | | | (| b = proton (atomic) number | nic) number | _ | Protactinium
91 | _ | _ | Ε | Americium
95 | Ourium
96 | Berkelium
97 | Californium
98 | E | Fermium
100 | Mendelevium
101 | Nobelium
102 | Lawrendum
103 | | • | | | - | | | | | | 3 | 8 | 5 | 3 | - 1 | | | | 2 | The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.). To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.