

Cambridge IGCSE[™]

CHEMISTRY		0620/3
CENTRE NUMBER	CANDIDATE NUMBER	
CANDIDATE NAME		

Paper 3 Theory (Core)

October/November 2020

1 hour 15 minutes

You must answer on the question paper.

No additional materials are needed.

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You may use a calculator.
- You should show all your working and use appropriate units.

INFORMATION

- The total mark for this paper is 80.
- The number of marks for each question or part question is shown in brackets [].
- The Periodic Table is printed in the question paper.

This document has **20** pages. Blank pages are indicated.

PapaCambridge

IB20 11_0620_33/2RP © UCLES 2020

[Turn over

1 (a) The diagram shows part of the Periodic Table.

-	Ш						Ш	IV	V	VI	VII	VIII
				Н								
									N	0	F	
							Αl				Cl	Ar
K	Ca										Br	
											I	
					Pt							

Answer the following questions using only the symbol of the elements in the diagram. Each symbol may be used once, more than once or not at all.

State the symbol of the element that:

(i)	is a fuel which is a gas at room temperature	
		[1]
(ii)	is used to kill bacteria in water	
		[1]
(iii)	forms a stable ion of type X ³⁺	
		[1]
(iv)	is a grey-black non-metallic solid at room temperature	
		[1]
(v)	forms an ion which, on addition of aqueous sodium hydroxide, gives a white precipit which is soluble in excess aqueous sodium hydroxide.	ate
		Г 1

((h)) Sulfur	has	several	isoto	nes
۱	NO.	Juliui	Has	Several	13010	pes.

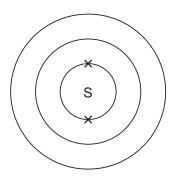
1	(i)	Identify	/ one	correct	statement	about	isotones
V	u	, ideiilli	y One	COLLECT	Statement	about	isolopes.

Tick one box.

They are molecules with the same number of neutrons but different numbers of protons.	
They are atoms with the same number of protons but different numbers of neutrons.	
They are molecules with the same number of protons but different numbers of electrons.	
They are atoms with the same number of neutrons but different numbers of protons.	

[1]

(ii) An isotope of sulfur is shown.


³³S

Deduce the number of protons and neutrons in this isotope.

number of protons .	
number of neutrons	

[2]

(c) Complete the electronic structure of a sulfur atom.

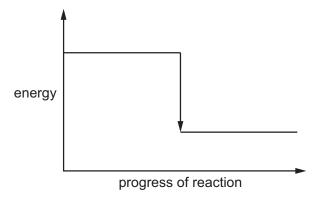
[1]

[Total: 9]

[Turn over

Papa Cambridge

The table shows the mass of air pollutants, in nanograms, in 1000 cm³ samples of air taken over a four month period.


	mass of pollutant in 1000 cm ³ of air/nanograms					
month	oxides of nitrogen	sulfur dioxide	carbon monoxide	ozone	particulates	
August	106.0	3.0	2.1	29.5	18.5	
September	147.5	5.5	2.4	21.1	35.5	
October	179.3	3.5	2.0	20.3	22.5	
November	214.0	3.6	2.6	12.8	29.4	

(a)	Ans	swer these questions using only the information in the table.
	(i)	Name the pollutant that shows a decrease in concentration between August and November
	(ii)	Calculate the mass of oxides of nitrogen in 250 cm ³ of the sample of air taken in August.
		nanograms [1
(b)	Car	bon monoxide is produced by the incomplete combustion of fossil fuels.
	(i)	State the meaning of the term incomplete combustion.
		[1
	(ii)	Give one adverse effect of carbon monoxide on health.
		[1
(c)		bon monoxide is also produced when methane reacts with steam in the presence of a alyst.
	(i)	Explain why a catalyst is used in this reaction.
	(ii)	Methane is an air pollutant.
		State one source of methane in the air.
		[1]

(d) (i) Complete the chemical equation for the reaction of carbon monoxide with oxygen.

.....CO +
$$O_2 \rightarrowCO_2$$
 [2]

- (ii) Complete the energy level diagram for the reaction of carbon monoxide with oxygen by writing these words on the diagram:
 - reactants
 - products.

[1]

(iii) Explain, using information on the energy level diagram, how you know that this reaction is exothermic.

141

(e) (i) Describe a test for carbon dioxide.

test	
result	
	[2]

(ii) Identify which **one** of these pH values represents the pH of a solution of carbon dioxide in water.

Draw a circle around the correct answer.

[Total: 13]

3 Some properties of four substances, A, B, C and D, are shown in the table.

substance	electrical conductivity when solid	electrical conductivity when molten	melting point	solubility in water
Α	does not conduct	does not conduct	low	insoluble
В	conducts	conducts	high	insoluble
С	does not conduct	does not conduct	very high	soluble
D	does not conduct	conducts	high	soluble

Answer these questions using only the information in the table.

(a)	State which substance, A , B , C or D , is sulfur.	
	Explain your answer.	
	substance	
	explanation	
		[3
(b)	State which substance, A , B , C or D , is sodium chloride.	
	Explain your answer.	
	substance	
	explanation	

[Total: 6]

[3]

4 The structure of crotonic acid is shown.

- (a) (i) On the structure, draw a circle around the functional group which shows that this is an unsaturated compound. [1]
 - (ii) Deduce the formula of crotonic acid to show the number of carbon, hydrogen and oxygen atoms.

.....[1]

(iii) Complete the table to calculate the relative molecular mass of crotonic acid. Use your Periodic Table to help you.

type of atom	number of atoms	relative atomic mass	
carbon	4	12	4 × 12 = 48
hydrogen		1	
oxygen		16	

(b) Acids react with bases such as calcium oxide.

Complete the word equation for the reaction of nitric acid with calcium oxide.

[2]

(c)	Cal	cium oxide is manufactured from limestone by thermal decomposition.							
	(i)	Give the name of the main chemical compound in limestone.							
			[1]						
	(ii)	State the meaning of the term thermal decomposition.							
			[2]						
(d)	Cal	cium oxide reacts with water to produce slaked lime.							
	State one use of slaked lime.								
			[1]						
		[Total:	10]						

5	The	e forr	mula of ethanol is C_2H_6O .	
	(a)	Dra	w the structure of ethanol to show all of the atoms and all of the bonds.	
				[0]
				[2]
	(b)	Eth	anol is a liquid at room temperature.	
		Des	scribe the motion and separation of the particles in ethanol.	
		mot	tion	
		sep	paration	
				[2]
	(c)	Nar	me the two products formed when ethanol undergoes complete combustion.	
		1		
		2		
				[2]
	(d)		anol can be manufactured by the fermentation of glucose. e condition is using enzymes in yeast.	
		(i)	State two other conditions for fermentation.	
			1	
			2	
				[2]
		(ii)	Name the method used to separate the ethanol from the reaction mixture after fermental is complete.	ion

1	(e)	Alcohols can	also be	manufactured	from	alkenes
١		/ licoriois cari	4130 50	manadatata	11 0111	anteries.

Com	olete the	word e	equation :	for the	manufacture	of ethano	ol by	this method.

		+		\rightarrow	ethanol	
--	--	---	--	---------------	---------	--

[2]

[Total: 12]

6	The electrolys	sis of concent	rated hydrochlo	oric acid produce	s gases at each	n electrode.
•	TITO CICCLICITY	010 01 001100110	atou ilyalooliic	nio acia produce	o gacco at caci	i diddii dad.

(a)	Describe the electrolysis of concentrated hydrochloric acid.
	In your answer include:

 a labelled diagram of the apparatus used for the electrolysis and collection of g 	•	a labelled	diagram	of the	apparatus	used for	the	electrolys	is and	collection	of	gase
---	---	------------	---------	--------	-----------	----------	-----	------------	--------	------------	----	------

positive electrode

negative electrode

[5]

(b) Carbon dioxide is produced when hydrochloric acid reacts with sodium carbonate.

Complete the chemical equation for this reaction.

$$Na_2CO_3 + 2HCl \rightarrow \dots NaCl + \dots + CO_2$$
 [2]

(c) Carbon dioxide reacts with carbon to produce carbon monoxide.

$$CO_2 + C \rightarrow 2CO$$

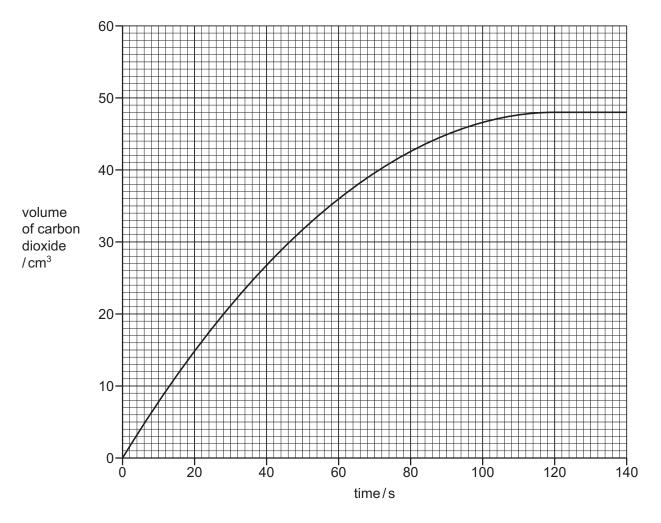
Explain how this equation shows that carbon dioxide has been reduced.

.....[1]

[Total: 8]

- 7 A student investigated the rate of reaction of excess calcium carbonate with dilute hydrochloric acid in a conical flask by two different methods.
 - Method 1: Measure the volume of carbon dioxide produced at 10 second intervals.

Method 2: Measure the loss in mass of the reaction mixture by weighing at 10 second intervals.


(a)	(i)	Suggest one	advantage of	Method 1	compared	with	Method 2	2

	[1]

(ii) Explain why there is a decrease in mass of the reaction mixture in Method 2.

F41

(b) The graph shows how the volume of carbon dioxide changes as the reaction proceeds, using Method 1.

The student used large pieces of calcium carbonate.

Ans	swer these questions using information from the graph.
(i)	Describe how the rate of this reaction changes with time.
	[1]
(ii)	Deduce the time taken to collect 36 cm³ of carbon dioxide.
	time = s [1]
(iii)	The experiment is repeated using smaller pieces of calcium carbonate.
	Draw a line on the grid to show how the volume of carbon dioxide changes with time when smaller pieces of calcium carbonate are used.
	All other conditions stay the same. [2]
(iv)	Describe what effect the following changes have on the rate of this reaction.
	The temperature is increased.
	All other conditions stay the same.
	The concentration of the hydrochloric acid is decreased.
	All other conditions stay the same.

[Total: 8]

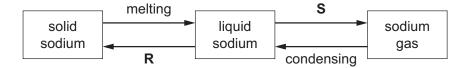
[2]

[Turn over

Papa Cambridge

8	This o	question	is	about	metals	and	compounds	of	metals.
---	--------	----------	----	-------	--------	-----	-----------	----	---------

(a) (i) Sodium is a metal in Group) I of the Periodic Table.
--	----------------------------


Identify two correct statements about sodium.

Tick two boxes.

It is a relatively soft metal.	
It has a high melting point.	
It forms coloured chlorides.	
It has a lower density than most metals.	
It is a good insulator.	

[2]

(ii) Some changes of state of sodium are shown.

Give the names of the changes of state represented by ${\bf R}$ and ${\bf S}$.

K	
s	
	[2]

(b) The table compares the reactions of four metals with dilute and with concentrated hydrochloric acid.

metal	metal observation with observation with dilute hydrochloric acid concentrated hydrochloric				
beryllium	bubbles form rapidly	form rapidly bubbles form very rapidly			
copper	no bubbles seen	seen no bubbles seen			
iron	bubbles form very slowly	bubbles form slowly			
nickel	no bubbles seen	bubbles form slowly			

Put the four metals in order of their reactivity.	
Put the least reactive metal first.	

least reactive —		most reactive	
			[2]

(c) Crystals of magnesium chloride, $MgCl_2 \cdot 6H_2O$, can be prepared by adding excess magnesium powder to dilute hydrochloric acid.

Describe how to prepare a sample of pure dry magnesium chloride crystals after the reaction is complete.

In your answer describe how to:

- remove the excess magnesium from the reaction mixture
- crystallise the magnesium chloridedry the crystals.

[4]

(d)	Wh	When magnesium reacts with concentrated sulfuric acid, sulfur dioxide is produced.							
	Со	Complete this description of the test for sulfur dioxide using words from the list.							
		blu	ıe	chloride	colourles	s			
		gre	en ma	nganate(VII)	sulfate(V	I)			
	Th	e test for sulfur d	ioxide uses acidifi	ed aqueous pot	assium				
	Th	e colour change	is from purple to				[2]		
(e)	Gre	een nickel(II) sul	fate crystals turn y	vellow when hea	ated.				
		nick	NiSO ₄ •7H ₂ O green cel(II) sulfate	yello)W				
	(i)	Suggest how yo	ou would change <u>y</u>	yellow nickel(II)	sulfate to green	nickel(II) sulfa	te.		
							[1]		
	(ii)	Identify which v	vord best describe	es green nickel((I) sulfate with the	e formula NiSC	0 ₄ •7H ₂ O.		
		Draw a circle a	round the correct	answer.					
		anhydrous	decomposed	hydrated	oxidised	reduced	[1]		
						[Total: 14]		

BLANK PAGE

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

© UCLES 2020 0620/33/O/N/20

The Periodic Table of Elements

							Gro	Group								
											≡	≥	>	>	=	≡>
						- :										٥ :
						I										e T
			Key			hydrogen 1										helium 4
_			atomic number		J						2	9	7	8	6	10
		ato	atomic symbo	loc							В	ပ	z	0	ш	Ne
		rela	name relative atomic mass	SSI							boron 11	carbon 12	nitrogen 14	oxygen 16	fluorine 19	neon 20
_											13	14	15	16	17	18
											Ρſ	S	۵	ഗ	CI	Ā
											aluminium 27	silicon 28	phosphorus 31	sulfur 32	chlorine 35.5	argon 40
	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
	Sc	F	>	ပ်	Mn	Fe	ပိ	Z	Cn	Zu	Ga	Ge	As	Se	Ŗ	궃
	scandium 45	titanium 48	vanadium 51	chromium 52	manganese 55	iron 56	cobalt 59	nickel 59	copper 64	zinc 65	gallium 70	germanium 73	arsenic 75	selenium 79	bromine 80	krypton 84
_	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
	>	Z	g	Mo	ည	Ru	格	Pd	Ag	පි	In	Sn	Sb	<u>e</u>	Н	Xe
	yttrium 89	zirconium 91	niobium 93	molybdenum 96	technetium -	ruthenium 101	rhodium 103	palladium 106	silver 108	cadmium 112	indium 115	tin 119	antimony 122	tellurium 128	iodine 127	xenon 131
1	57–71	72	73	74	75	9/	77	78	62	80	81	82	83	84	85	98
	lanthanoids	Ξ	<u>a</u>	>	Re	SO	'n	瓧	Αu	£	lΤ	Ъ	Ξ	Ро	Ą	R
		hafnium 178	tantalum 181	tungsten 184	rhenium 186	osmium 190	iridium 192	platinum 195	gold 197	mercury 201	thallium 204	lead 207	bismuth 209	polonium	astatine -	radon
	89-103	104	105	106	107	108	109	110	111	112		114		116		
	actinoids	꿆	op O	Sg	Bh	Hs	Μţ	Ds	Rg	ပ်		Εl		^		
_		rutherfordium	dubnium	seaborgium	pohrium	hassium	meitnerium	darmstadtium	roentgenium	copernicium		flerovium		livermorium		
ı			ı	ı		ı	ı	I	ı	ı		I		ı		

57 58 59 60 61 62 63 64 65 66 67 68 69 70 La Ce Pr Nd Pm Sm Eu Gd Tb Dy HO Er Tm Yb lanthatum certum presecdymium proceditium proceditium europium gaodeinium tertium dysprosium promium printium printium </th
58 59 60 61 62 63 64 65 66 67 68 Ce cerium 140 Pr Nd Pm Sm Eu Gd Tb Dy HO Er 140 141 144 - 150 157 159 163 167 167 90 91 92 93 94 95 96 97 98 99 100 Th Pa U Np Pu Am Cm BK Cf Es Fm thorum puttorium
58 59 60 61 62 63 64 65 66 67 Ce Pr Nd Pm Sm Eu Gd Tb Dy HO cerlum prosedymium promethium samarium europium gadoinium terbium dysprosium hominum 140 141 144 - - 150 157 159 163 165 90 91 92 93 94 95 96 97 98 99 Th Pa U Np Pu Am Cm BK Cf Es thorium protectinium repunium repunium protectinium repunium protectinium carium berkelium caricum representation
58 59 60 61 62 63 64 65 66 66 Ce Pr Nd Pm Sm Eu Gd Tb Dy cerlum prasecdymium neodymium promethium samarium europium gadolinium terbium dysprosium 140 141 144 - 150 157 159 163 90 91 92 93 94 95 96 97 98 Th Pa U Np Pu Am Cm Bk Cf thorum protectinum protectinum neptunium pritonium americum berkelium californium
Ce Pr Nd Pm Sm Eu Gd Tb cerlum prosectorymium promethium samarium europium gadolinium terrbium cerlum 140 141 144 - 150 157 159 157 159 90 91 92 93 94 95 96 97 Th Pa U Np Pu Am Cm Bk thorium putrolium putrolium putrolium putrolium putrolium perfeitum perfeitum
Ce Pr Nd Pm Sm Eu Gd Cerlum praseodymium neodymum promethum samarium europium gadofinium 140 141 144 - 150 152 157 90 91 92 93 94 95 96 Th Pa U Np Pu Am Cm thorium protectinium uranium neptunium putonium americum curium
58 59 60 61 62 63 Ce Pr Nd Pm Sm Eu cerlum praseodymium neodymium promethium samarium europium gr 140 141 144 - 152 152 90 91 92 93 94 95 Th Pa U Np Pu Am thorium putorium meridum ameridum 232 231 238 - -
Ce Pr Nd Pm Sm cerlum prasecdymium neodymium promethium samarium 140 141 144 – 150 90 91 92 93 94 Th Pa U Np Pu thoritum protactinium uranium neptunium plubrnium
58 59 60 61 Ce Pr Nd Pm cerlum prasecdymium neodymium promethium 140 141 - - 90 91 92 93 Th Pa U Np thorium protactinium uranium nepturium 232 231 238 -
Ce Pr Nd cerlum praseodymium neodymium 140 91 92 Th Pa U thorum protectinium protec
Ce Pr certum praseodymium 140 140 91 Th Pa thorium protactinium 232 231
Ce certum p 140 90 90 Th thorium 232
La lanthanum 139 89 AC actinum

lanthanoids

actinoids

The volume of one mole of any gas is $24\,\mathrm{dm^3}$ at room temperature and pressure (r.t.p.).

© UCLES 2020 0620/33/O/N/20

