MARK SCHEME for the October/November 2013 series

0444 MATHEMATICS (US)

0444/33 Paper 3 (Core), maximum raw mark 104

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Qu	Part	Answers	Mark	Part Marks
1	(a) (b) (c)	(i) 40 (ii) 140 (i) $\quad[w=] 90$ (ii) $[x=] 24$ (iii) $[y=] 66$ $[z=] 66$ [Angle between] tangent [and] diameter/radius $[=] 90^{\circ}$	$\stackrel{2}{\mathbf{1 F T}}$ 1 1 1FT 1FT 1	M1 for $360 \div 9$ 180 - their (a)(i) $180-$ (their $w+$ their $x)$ (90 - their x) or their y
2	(a) (b) (c) (d)	240900 [Total] 1640 (i) $600 \div 5 \times 17$ (ii) 30 43.1 261.36 cao	1, 1 1FT M2 2 2	$500+$ their 2 costs M1 for $600 \div 5$ or $17 \div 5$ M1 for $2040 \div 17 \times 3$ or 120×3, soi by 360 or $\mathbf{S C 1}$ for their $360 \div 12$ M1 for $\frac{2920-2040}{2040} \times 100$ oe or $\left(\frac{2920}{2040}-1\right) \times 100$ oe or $\frac{2920}{2040} \times 100-100$ oe M1 for 1500×1.055^{3} oe M1FT for their 1761.36-1500 If only 1 scored $\mathbf{S C} 1$ for correctly rounding to 2 decimal places from at least 3 decimal places SC2 if only 1761.32 seen

Page 4	Mark Scheme	Syllabus		
IGCSE - October/November 2013				0444
5	(a)			

\begin{tabular}{|c|c|c|c|c|}
\hline 5 \& \begin{tabular}{l}
(a) \\
(b) \\
(c) \\
(d)
\end{tabular} \& \begin{tabular}{l}
(i) \(1,7,1\) \\
(ii) 8 points correctly plotted \\
Correct smooth curve through all 8 correct points -1.1 to -1.3 and 4.1 to 4.3 \\
(i) Line \(x=1.5\) drawn \\
(ii) \(x=1.5\) oe \\
(i) Ruled continuous line drawn \\
(iii) 1 \\
(iii) \(\quad[y=] x+2\)
\end{tabular} \& \begin{tabular}{l}
\(1,1,1\) \\
P3FT \\
C1 \\
1FT, \\
1FT \\
1 \\
1FT \\
1 \\
2 \\
1FT
\end{tabular} \& \begin{tabular}{l}
P2FT for 6 or 7 correct P1FT for 4 or 5 correct \\
Equation of their line in (c)(i) \\
M1 for \(\frac{\text { rise }}{\text { run }}\) for their line \\
their (d) (ii) + their 2
\end{tabular} \\
\hline 6 \& (a)
(b)
(c)

(d) \& \begin{tabular}{l}
(i) 18

(ii) 7

(iii) 25

Alison with reference to [higher] mean and Bethan with reference to [higher] median

(i) $[$ Frequencies $] 3,2,1$

[Angles] $72^{\circ}, 48^{\circ}, 24^{\circ}$

(ii) Two correct sectors on pie chart

3 'correct' labels

$\frac{2}{5}$

 \&

1

2

1FT

1FT

1
2

2FT

1

 \&

M1 for evidence of ordering

M1 for sum of 15 items $\div 15$ soi

Strict FT

Strict FT

B1 for 1 correct or

M1 for one frequency $\div 15 \times 360$ or $\times 24$

B1FT for 1 correct sector Only FT if (c)(i) angles total 144

Independent

B1 for 0.4 or 40% or $\frac{6}{15}$ or any equivalent fraction.
\end{tabular}

\hline
\end{tabular}

Page 5	Mark Scheme	Syllabus
	IGCSE - October/November 2013	0444

7	(a) (b) (c) (d)	[Angle DCE $=$] 36.9 or 36.8699 to 36.9 1.875 or 1.88 3.75 (i) 0.96 (ii) 10	3 2 1FT 1 2	B1 for [DE =] 0.75 soi M1 for \tan DCE $=\frac{\text { their } D E}{1.0}$ M1 for $0.5 \times(1.5+2.25) \times 1.0$ oe their $\mathbf{(b)} \times 2$ M1 for 0.04×250 or 0.96×250
8	(a) (b) (c) (d) (e)	Octagon [Pattern 3] 20 and 22 [Pattern 4] 26, 29 [Pattern 7] 44, 50 (i) $6 n+2$ oe final answer (ii) 140 $7 n+1$ oe final answer $n-1$ final answer	$\begin{gathered} 1 \\ 1 \\ 1,1 \\ 1,1 \\ 2 \\ 1 \mathrm{FT} \\ 2 \\ 2 \end{gathered}$	B1 for $6 n+\mathrm{a}$ or $\mathrm{b} n+2 \mathrm{~b} \neq 0$ ft linear expression in (c) (i) B1 for $7 n+\mathrm{c}$ or $\mathrm{d} n+1 \mathrm{~d} \neq 0$ B1FT for $n+\mathrm{j}$ or $\mathrm{k} n-1 \quad \mathrm{k} \neq 0$
9	(a) (b) (c)	(i) $[r=] \sqrt{\frac{3 \mathrm{~V}}{\pi \mathrm{~h}}}$ (ii) $[r=] \sqrt{\frac{3 \times 141}{\pi x 15}}$ $[r=] 2.99 \ldots$ 18.9 or 18.8 or 18.849 to 18.852 1.9 [cents] cao	2 M1FT A1 2 3	B1 for $\left[r^{2}=\right] \frac{3 V}{\pi}$ or $\frac{3 V}{h}$ seen or better. their formula M1 for $2 \times \pi \times 3$ oe M1 for 2.15 (or 215) $\div 113$ A1 for $0.019(0 \ldots$) or $1.9(0 \ldots)$ soi

