www.PapaCambridge.com

CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the October/November 2013 series

0444 MATHEMATICS (US)

0444/41

Paper 4 (Extended), maximum raw mark 130

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

			Syllahus	
F	Page 2	Mark Scheme	Syllabus	3
		IGCSE – October/November 2013	0444	apa.
Abbre	eviations		`	Cambridge Com
cao	correct answ	ver only		Of.
cso	correct solu	tion only		8
dep	dependent			- co
ft	follow throu	agh after error		-On
isw	ignore subse	equent working		
oe	or equivaler	nt		
SC	Special Cas	e		

Abbreviations

without wrong working seen or implied www

soi

		Correct answer		Part marks
1	(a) (i)	$\frac{2}{5}$ cao	1	
	(ii)	3:2 cao	1	
	(b) (i)	1.22	2	M1 for $86.38 - 28 \times 1.56$
	(ii)	1.3[0] nfww	3	M2 for 1.56 ÷ 1.2 oe or M1 for 1.56 = 120% soi
	(c)	33.6[0]	2	M1 for $(667 - 314.2) \div 10.5$ oe
2	(a) (i)	204 or 204.2 to 204.23	2	M1 for $\pi \times 5 \times 13$ implied by answer in range 204.1 to 204.3
	(ii)	12 cao	3	M2 for $\sqrt{13^2 - 5^2}$ or states 5, 12, 13 triangle or M1 for $13^2 = 5^2 + h^2$ or better
	(iii)	314 or 314.1 to 314.2	2	M1 for $\frac{1}{3} \times \pi \times 5^2 \times their$ (a)(ii) implied by answer in range 314 to 314.3
	(iv)	3.14×10^{-4} or 3.141 to 3.142×10^{-4}	2FT	FT their (a)(iii) $\div 100^3$ correctly evaluated and given in standard form to 3 sig figs or better or M1 FT for their (iii) $\div 100^3$
	(b)	138 or 138.3 to 138.5	4	or SC1 for conversion of <i>their</i> m³ into standard form only if negative power M3 for $\frac{10\pi}{26\pi} \times 360$ oe or $\frac{\pi \times 5 \times 13 \text{ or their (a)(i)}}{\pi \times 13^2} \times 360$ oe or M2 for a correct fraction without × 360 or M1 for $\pi \times 2 \times 13$ [81.6 to 81.8] seen
				or $\pi \times 13^2$ [530.6 to 531.2] seen

		www.
Page 3	Mark Scheme	Syllabus
	IGCSE – October/November 2013	0444

			1	8
3	(a)	45.[0] or 45.01 to 45.02 nfww	4	M2 for $55^2 + 70^2 - 2.55.70 \cos 40$ or M1 for correct implicit equation A1 for 2026 B1 for angle $BDC = 40$ soi
	(b)	84.9 or 84.90 to 84.92	4	B1 for angle $BDC = 40$ soi
	(c) (i)	4060 or 4063 to 4064 nfww	3	M2 for $\frac{70 \sin{(their40)}}{\sin{32}}$ or M1 for correct implicit equation $\frac{1}{2} (55 \times 70 \sin{40}) + $ M2 for $\frac{1}{2} (70 \times their (\mathbf{b}) \sin{(180 - their 40 - 32)})$ or M1 for correct method for one of the triangle
	(ii)	1020 or 1015 to 1016	2FT	areas FT their (c)(i) ÷ 4 oe correctly evaluated or M1 their (c)(i) ÷ figs 4 oe
	(d)	35.4 or 35.35 nfww	2	M1 for $\sin 40 = \frac{\text{distance}}{55}$ or better or for $\frac{1}{2}$ (55 × 70 sin 40) = (70 × distance) ÷ 2 or better
4	(a) (i)	Correct reflection to (4, 8) (2, 9) (4, 9)	2	SC1 for reflection in line $x = 5$ or reflection in $y = k$ Ignore additional triangles
	(ii)	Correct rotation to (4, 2), (4, 3) (6, 3)	2	SC1 for rotation 180° with incorrect centre Ignore additional triangles
	(iii)	Enlargement to (2, 4) (10, 4) (10, 8)	2	SC1 for enlargement factor 4 correct orientation Ignore additional triangles
	(iv)	Stretch, y-axis invariant, [factor] 2	3	B1 each (independent)
	(b) (i)	$\mathbf{p} + 2\mathbf{s}$ final answer	2	M1 for recognising \overrightarrow{OQ} as position vector soi
	(ii)	$\mathbf{s} + \frac{1}{2} \mathbf{p}$ final answer	2	B1 for $\mathbf{s} + k\mathbf{p}$ or $k\mathbf{s} + \frac{1}{2}\mathbf{p}$ or correct route $(k \neq 0)$
	(c)	parallel and $OQ = 2SR$ oe	1	

		my
Page 4	Mark Scheme	Syllabus
	IGCSE – October/November 2013	0444

		_	3
5 (a) (i)	1.4 to 1.6	1	ambridge.com
(ii)	1.15 to 1.25	1	Et.
			Cdy
(iii)	-1	1	
(iv)	- 2.25 to - 2.1 - 0.9 to - 0.75 2.2 to 2.35	3	B2 for 2 correct or B1 for one correct or B1 for $y = x$ drawn ruled to cut curve 3 times
(b) (i)	- 15	2	B1 for $[h(3) =] 8$ seen or M1 for $1 - 2(x^2 - 1)$ or better
(ii)	$\frac{1-x}{2}$ or $\frac{1}{2} - \frac{x}{2}$ oe final answer	2	M1 for $2x = 1 - y$ or $x = 1 - 2y$ or better
(iii)	-2, 2	3	M1 for $x^2 - 1 = 3$ or better B1 for one answer
(iv)	$\frac{1}{8}$ oe nfww	3	M2 for $8x = 1$ or $8x - 1 = 0$ or M1 for $1 - 2(3x) = 2x$
6 (a)	24.7 or 24.66 to 24.67	4	M1 for midpoints soi (condone 1 error or omission) (5, 15, 25, 35, 45, 55) and M1 for use of $\sum fx$ with x in correct interval including both boundaries (condone 1 further error or omission) and M1 (dependent on second M) for $\sum fx \div 120$
(b) (i)	50, 90, 114	2	B1 for 2 correct
(ii)	Correct curve or ruled polygon	3	Ignore section to left of $t = 10$ B1 for 6 correct horizontal plots and B1FT for 6 correct vertical plots If 0 scored SC1 for 5 out of 6 correct plots and B1FT for curve or polygon through at least 5 of their points dep on an increasing curve/polygon that reaches 120 vertically
(iii)	21.5 to 23 15 to 16.5 24 to 26	4	B1 B1 B2 or B1 for 72 or 72.6 seen
(c) (i)	50, 30	2	B1 each
(ii)	Correct histogram	3FT	B1 for blocks of widths $0 - 20$, $30 - 60$ B1FT for block of height 2.5 or <i>their</i> $50 \div 20$ and B1FT for block of height 1 or <i>their</i> $30 \div 30$

		mm
Page 5	Mark Scheme	Syllabus
	IGCSE – October/November 2013	0444

		1	1	100
7	(a)	$\sqrt{(-11)^2 - 4(8)(-11)}$ or better	B1	Seen anywhere or for $\left(x - \frac{11}{16}\right)^2$
		p = -(-11), r = 2(8) or better	B1	Must be in the form $\frac{p+\sqrt{q}}{r}$ or $\frac{p-\sqrt{q}}{r}$
				or B1 for $\sqrt{\frac{11}{8} + \left(\frac{11}{16}\right)^2} + \frac{11}{16}$
		– 0.67, 2.05 final answers	B1B1	SC1 for - 0.7 or - 0.672 to - 0.671 and 2.0 or 2.046 to 2.047 or answers 0.67 and - 2.05
	(b)	132	3	M1 for $y = k\sqrt{x}$ oe or $\sqrt{x} = ky$ oe
	(b)	132	3	A1 for $k = 6$ oe or better or for $k = 0.1666$ to 0.167 $[k = 6$ implies M1A1] oe
	(c)	20 with supporting algebraic working	6	B2 for $\frac{x}{2.5} + \frac{x - 14.5}{0.5} = 19$ oe
				or B1 for $\frac{x}{2.5}$ or $\frac{x-14.5}{0.5}$
				M1dep on B2 for first completed correct move to
				clear both fractions M1 for second completed correct move to collect
				terms in x to a single term M1 for third completed correct move to collect numeric term[s] leading to $ax = b$
				SC1 for 20 with no algebraic working
8	(a)	y = 2 oe	1	
		y = 2x oe	2	M1 for $y = kx$, $k \neq 0$ or gradient 2 soi
		$y = -\frac{1}{2}x + 5$ oe	2	M1 for gradient – ½ soi or $y = kx + 5$ oe
				or $x + 2y = k$ $k \neq 0$ oe
				If L ₂ and L ₃ both correct but interchanged then SC3
	(b)	y 2 oe		
		$y = 2x$ oe $y = -\frac{1}{2}x + 5$ oe		
		y - /2 x + 3 0C	3	B1 for each correct inequality, allow in any order After 0 scored, SC1 for all inequalities reversed
			1	
	(c) (i)	4 [bushes], 3 [trees]	2	M1 for any correct trial using integer coordinates in region or $30x + 200y = 720$ seen
	(c) (i) (ii)	4 [bushes], 3 [trees] 2 [bushes], 4 [trees]	2	in region

Page 6 Mark Scheme Syllabus			my
	Page 6	Mark Scheme	Syllabus r
IGCSE – October/November 2013 0444		IGCSE – October/November 2013	0444

	1		I	62
9 (a)) (i)	1+2+3+4+5=15	1	THE STATE OF THE S
	(ii)	Correct substitution equating to sum e.g. $\frac{2(2+1)}{k} = 3$ and $k = 2$ stated	2	M1 for using a value of n in $\frac{n(n+1)}{k}$ e.g. $\frac{2(2+1)}{k}$
		with no errors seen		or for a verification using $k = 2$ e.g. $\frac{2(2+1)}{2} = 3$
	(iii)	1830	1	
	(iv)	30	2	M1 for $\frac{n(n+1)}{2} = 465$ or better
	(v)	n-8	1	
(b) (i)	225, 15	2	B1 either
	(ii)	$\frac{n^2(n+1)^2}{4}$ oe	1	
	(iii)	36100	2	M1 for $\frac{19^2(19+1)^2}{4}$ oe or 190^2
10 (a))	4724	3	M2 for 8000×0.9^5 oe (implied by 4723.92) M1 for $8000 \times 0.9^n n > 1$
(b)	$100 \times 1.005^2 + 100 \times 1.005$ oe	M2	M1 for 100×1.005^2 seen
(c))	$2^{n}-1$	2	M1 for use of $a(r^n-1)/(r-1)$ oe