MARK SCHEME for the October／November 2013 series

0444 MATHEMATICS（US）

0444／43
Paper 4 （Extended），maximum raw mark 130

This mark scheme is published as an aid to teachers and candidates，to indicate the requirements of the examination．It shows the basis on which Examiners were instructed to award marks．It does not indicate the details of the discussions that took place at an Examiners＇meeting before marking began， which would have considered the acceptability of alternative answers．

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers．

Cambridge will not enter into discussions about these mark schemes．

Cambridge is publishing the mark schemes for the October／November 2013 series for most IGCSE， GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components．

	Correct answer	Mark	Part marks
1 (a) (i) (ii) (iii)		2	M1 for $5 \times 63 \div 7$ M1 for $5 \times 56 \div 14$ $\begin{aligned} & \text { M2 for } \frac{13 \times 4.9-48.8}{13 \times 4.9} \times 100 \text { or } \\ & \frac{4.9-48.8 \div 13}{4.9} \times 100 \\ & \text { or } \\ & \text { M1 for } \frac{13 \times 4.9-48.8}{13 \times 4.9} \text { or } \\ & \frac{48.8}{13 \times 4.9} \times 100 \text { or } 76.6[\ldots] \end{aligned}$

Page 3	Mark Scheme	Syllabus
	IGCSE - October/November 2013	0444

(b)	128	4	Using fractions (percentages decimals): M1 for $\frac{3}{4} \times \frac{3}{8}\left[=\frac{9}{32}\right]$ or $\frac{75}{100} \times 37.5[=28.125 \%]$ A1 for $\frac{9}{32}$ or $28.125[\%]$ M1 for $36 \div \frac{9}{32}$ oe or $36 \times \frac{100}{28.125}$ oe Partial percentages M1 for (Remaining) $\frac{100 \times 36}{37.5}$ [=96] A1 for 96 M1 for $96 \div \frac{75}{100}$ oe SC1 for 288
$2 \quad \text { (a) }$	119.94[...] nfww	3	M2 for $\frac{62 \times \sin 122}{\sin 26}$ or M1 for $\frac{A C}{\sin 122}=\frac{62}{\sin 26}$ oe SC2 for correct answer from alternative methods
(b)	109 or 108.7 to 108.8 nfww	4	$\begin{aligned} & \text { M2 for } 119.9 . .^{2}+55^{2}-2 \times 119.9 . . \times \\ & 55 \cos 65 \\ & \text { A1 for } 11827[\cdots] \text { or } 11834 \text { to } \\ & 11835[\cdots] \\ & \text { or } \mathbf{M 1} \text { for implicit version } \end{aligned}$
(c)	1970 or 1969 to 1970.4	2	M1 for $1 / 2 \times 119.9 . . \times 62 \times \sin 32$
(d)	22300 or 22310 to 22320	3	$\begin{aligned} & \text { M2 for }(\text { their }(\mathbf{c})+0.5 \times 55 \times 119.9 . . \\ & \times \sin 65) \times 4.5 \\ & \text { or } \\ & \text { M1 for their }(\mathbf{c})+0.5 \times 55 \times 119.9 . . \\ & \times \sin 65 \end{aligned}$

Page 4	Mark Scheme	Syllabus
	IGCSE - October/November 2013	0444

3 (a)	$9-2 x, 7-2 x$ oe	2	B1 for each, accept in any oro
(b)	$\left\lvert\, \begin{aligned} & x(9-2 x)(7-2 x) \\ & 4 x^{3}-32 x^{2}+63 x \end{aligned}\right.$	$\begin{array}{\|c\|} \hline \text { M1FT } \\ \text { A1 } \end{array}$	Correct expansion and simplification with no errors
(c)	2420	2	B1 for each correct value
(d)	Correct curve	3	B2 FT for 5 correct plots or B1FT for 3 or 4 correct plots
(e)	0.65 to 0.75×2 oe	2	B1 for 0.65 to 0.75 seen
(f) (i)	36 to 37	1	
(ii)	1.2 to 1.4	1	
4 (a)	48 and 84 66 and 66	2	B1 for each pair
(b)	540	2	M1 for 3×180 or $(2 \times 5-4) \times 90$ or $5 \times(180-360 \div 5)$ oe
(c)	1620	2	M1 for $7 \times 360-$ their $540-360$
(d) (i)	$\begin{aligned} & 2 x+5+3 y-20+4 x-5+x+y-10=360 \\ & \text { oe } \end{aligned}$	1	Allow partial simplification but not $7 x+4 y-30=360$
(ii)	$2 x+5+3 y-20=180$	1	
(iii)	[$x=] 30,[y=] 45 \mathrm{nfww}$	4	M1 for correct multiplication M1 for correct elimination A1 $x=30$ or $y=45$
			If 0 scored $\mathbf{S C 1}$ for correct substitution to find the other variable
(iv)	65, 115, 115, 65	1	Accept in any order

Page 5	Mark Scheme	Syllabus
	IGCSE - October/November 2013	0444

Page 6	Mark Scheme	Syllabus
	IGCSE - October/November 2013	0444

\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
(c) \\
(d) (i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
11.5 or 11.6 \\
or 11.53 to 11.55
\[
\frac{r}{h}=\frac{20}{40} \text { or } \frac{r}{20}=\frac{h}{40}
\]
\end{tabular} \& \(3 F T\)
1

3 \& | M1 for their $(\mathbf{a}) \times 35$ |
| :--- |
| A1 for 11500 or 11530 to 11550 |
| Accept 20:40=r:h leading to $40 r=20 h[r=h / 2]$ $\frac{20}{40}=\frac{1}{2} \text { and } \frac{r}{h}=\frac{1}{2}$ |
| M2 for $\sqrt[3]{\frac{\text { their } 11545 \times 12}{\pi}}$ oe or $2 \times$ their r or |
| M1 for their $11545=\frac{1}{3} \times \pi \times\left(\frac{h}{2}\right)^{2} \times h$ oe |
| or their $11545=\frac{1}{3} \times \pi \times r^{2} \times 2 r$ oe |

\hline | 7 (a) (i) |
| :--- |
| (ii) |
| (iii) |
| (iv) | \& $\frac{3}{2}$ or 1.5

$$
y=\frac{3}{2} x+2 \mathrm{oe}
$$

$$
\begin{aligned}
& \binom{12}{18} \\
& 21.6 \text { or } 21.63[\ldots]
\end{aligned}
$$ \& 2

1
1

2 \& | M1 for $\frac{14-(-4)}{8-(-4)}$ oe |
| :--- |
| $\mathbf{B 1}$ for $y=$ their $\frac{3}{2} x+c$ o.e. |
| or $y=m x+2, m \neq 0$ |
| SC1 for $\frac{3}{2} x+2$ |
| M1 FT for their $12^{2}+$ their 18^{2} oe |

\hline
\end{tabular}

Page 7	Mark Scheme	Syllabus
	IGCSE - October/November 2013	0444

\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
(b) (i) (a) \\
(b) \\
(c) \\
(ii) \\
(iii)
\end{tabular} \& \(3 b-4 a\) \(\frac{1}{5}(6 \mathbf{b}-8 \mathbf{a})\) oe simplified \(6 \mathbf{a}+3 \mathbf{b}\) oe simplified \(O R\) is parallel to \(O T\) \(\frac{9}{4}\) or 2.25 \& 1 \& \begin{tabular}{l}
M1 for \(\frac{1}{5}(12 \mathbf{a}+6 \mathbf{b})-4 \mathbf{a}\) or \(\overrightarrow{A R}=\overrightarrow{A O}+\overrightarrow{O R}\) \\
Dep on \(\overrightarrow{O T}\) correct \\
M1 for \(\left(\frac{3}{2}\right)^{2}\)
\end{tabular} \\
\hline \begin{tabular}{l}
8 (a) (i) \\
(ii) \\
(iii) \\
(b) (i) (a) \\
(b) \\
(c) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
215 \\
\(\sqrt{5^{2}-4(1)(-20)}\) or better \\
[\(p=]-5\) and \([q=] 2(1)\) \\
2.62 \\
\(\frac{2(s-u t)}{t^{2}}\) oe nfww \\
120 \\
201 \\
1100.1 \\
\(100+\frac{m}{2}\)
\end{tabular} \& B1
B1
B1
3

1
1
1

1 \& | Only if in form $\frac{p+\sqrt{q}}{r}$ or $\frac{p-\sqrt{q}}{r}$ |
| :--- |
| M1 for a correct rearrangement to isolate the a term and |
| M1 for a correct multiplication by 2 and |
| M1 for a correct division by t^{2} |

\hline
\end{tabular}

Page 8	Mark Scheme	Syllabus
	IGCSE - October/November 2013	0444

9 (a) (b)	$\begin{aligned} & \frac{x}{x+3} \text { cao } \\ & \frac{3}{2} \text { and }-5 \end{aligned}$	3 7	B1 for $(x+3)(x-3)$ B1 for $x(x-3)$ M2 for $15(x+1)-20 x=2 x(x+1)$ or M1 for multiplication by one denominator only $\text { or } \frac{15(x+1)-20 x}{x(x+1)}$ and $\mathbf{B 2}$ for $2 x^{2}+7 x-15=0$ or B1 for $15 x+15-20 x$ or $2 x^{2}+2 x$ and M2 for $(2 x-3)(x+5)$ or their correct factors or formula or M1 for $(2 x+a)(x+b)$ where $a b=-15$ or $a+2 b=7$ A1 for $x=\frac{3}{2}$ and -5
10 (a) (b) (c) (i) (ii)	$\begin{aligned} & 15183 n+3 \text { or } 3(n+1) \\ & 610 \\ & 2536(n+1)^{2} \\ & \\ & 14 \\ & 1 / 2+p+q=9 \\ & {[p=] 3} \\ & {[q=] \frac{11}{2}} \end{aligned}$	1 5	B2 for 15, 6, 25 or B1 for two correct values B3 for 18, 10, 36 or B1 for each correct value B2 for $3 n+3$ oe or M1 for $3 n+k$, for any k B2 for $(n+1)^{2}$ oe or M1 for a quadratic expression M1 for $(n+1)(n+2)=240$ or better or $15 \times 16=240$ B2 for $4 p+2 q=23$ or B1 for $1 / 2 \times 2^{3}+p \times 2^{2}+q \times 2$ oe M1 for correct multiplication and subtraction of their equations A1 for $[p=] 3$ or $[q=] \frac{11}{2}$ If 0 scored then $\mathbf{S C 1}$ for either correct

