

CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

MARK SCHEME for the May/June 2013 series

0444 MATHEMATICS (US)

0444/21

Paper 2, maximum raw mark 70

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

			Syllabus 0444 Rapac	
F	Page 2	Mark Scheme	Syllabus r	
		IGCSE – May/June 2013	0444	
Abbre cao cso dep ft isw oe SC	eviations correct answer correct solutio dependent follow through ignore subsequ or equivalent Special Case	n only h after error	ambridge.co.	2

SC	Special Case
WWW	without wrong working

soi seen or implied

1	11 or -11	1	
2 (a)	[0].216	1	
(b)	[0].22	1ft	
3	72	2	M1 for 84 ÷ 7
4	105	2	M1 for 180 – 55 – 50 or B1 for 55 or 75 seen in the correct angle inside the triangle
5	8	2	M1 for $\frac{3k}{2k} \times \frac{16n}{3n}$
6	3x(4y - x) final answer	2	B1 for $3(4xy - x^2)$ or $x(12y - 3x)$
7	Accurate angle with arcs	2	B1 for accurate angle without arcs
8	$x \ge -\frac{3}{8}$ oe	2	M1 for $-3 \le 8x$ oe If 0 then SC1 for $-\frac{3}{8}$ with incorrect inequality
9	$7\sqrt{5}$	2	B1 for $2\sqrt{5}$ or $5\sqrt{5}$ seen
10	(a+b)(p-2)	2	B1 $p(a+b) - 2(a+b)$ or $a(p-2) + b(p-2)$
11	$3x^4$	2	B1 for kx^4 or $3x^k$
12	Cosine graph, amplitude 2, period 720	2	B1 for cosine graph amplitude 2 or period 720
13	407.6[0]	2	M1 for 200 × 2.038

			122
Page 3	Mark Schen	ne	Syllabus 7.0 r
	IGCSE – May/Jur	ne 2013	0444
14	3	3	Syllabus 0444rM2 for $r^3 = \frac{3 \times 36 \times \pi}{4 \times \pi}$ oe or better or M1 for $\frac{4}{3}\pi r^3 = 36\pi$ M1 for figs $6 \div (1.5 \times 20)$
15	3 [min] 20 [sec]	3	M1 for figs $6 \div (1.5 \times 20)$ A1 for 200 [seconds]
16	y = 2x - 1	3	B2 for $y = mx - 1$ or $y = 2x + c$ or $2x - 1$ or B1 for gradient = 2, B1 for $c = -1$ or SC1 for $\frac{6}{3}$ or $\frac{51}{3[-0]}$
17 (a)	(x+6)(x-5)	2	SC1 for $(x + a)(x + b)$ where $ab = -30$ or $a + b = 1$
(b)	$\frac{x+4}{x+6}$ final answer	1	
18	$\frac{6}{7}$ or 0.857[1]	3	M1 for $t = \frac{k}{\sqrt{u}}$ oe A1 for $k = 6$
19 (a) (i)	$p + \frac{1}{2}r$	1	
(ii)	$2\mathbf{p} + \mathbf{r}$	1ft	$2 \times their$ (i)
(b)	Midpoint of <i>R</i> Q	1	
20	$9\pi + 24$	3	SC2 for accept 9π
			If 0 M2 for $\frac{135}{360} \times \pi \times 24 + 2 \times 12$ oe or M1 for $\frac{135}{360} \times \pi \times 24$ oe
21	$\frac{5x+13}{(x+3)(x+2)}$ oe final answer	3	B1 for common denominator (x+3)(x+2) seen M1 for $2(x+2)+3(x+3)$ soi
22	$\frac{3}{7}$	4	M3 for [sin =] $\frac{\sqrt{7^2 - (6^2 + 2^2)}}{7}$ or M2 for [AC =] $\sqrt{7^2 - (6^2 + 2^2)}$ or
			or M12 for $[AC =]\sqrt{7 - (6 + 2)}$ or better or M1 for $6^2 + 2^2$ or better
23 (a)	$\frac{A-2\pi r^2}{2\pi r}$ or $\frac{A}{2\pi r} - r$ oe final answ	ver 2	M1 for correct first step
(b)	$y = 2^{x+1}$ oe	2	M1 for correct second step } SC1 for $k \times 2^{p}$, p not numerical

	Page 4		Mark Scheme IGCSE – May/June 20	013	$\frac{Syllabus}{0444}$ r B1 for any two without reasons M1 for $\frac{CD}{2} = \frac{5}{2}$ or
24	(a)	Ar	ny two of $ABX = CDX$ and alternate BAX = DCX and alternate AXB = CXD and vertically opposite	2	B1 for any two without reasons
	(b)	10		2	M1 for $\frac{CD}{4} = \frac{5}{2}$ oe
25	(a)	13	3 – 5 <i>n</i>	2	B1 for $\pm 5n$ seen
	(b)	n^2	² - 2	2	B1 for $n^2 + k$
26		42	.0	5	M1 for $[CB =] \sqrt{4^2 + (9 - 6)^2}$ M1 for <i>their CB</i> from Pythagoras × 15 M1 for $[2 \times] \frac{1}{2}(6+9) \times 4$ M1 for 4×15 , 9×15 , 6×15 with intention to add