WWW. Palls

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the May/June 2011 question paper for the guidance of teachers

0581 MATHEMATICS

0581/41

Paper 4 (Extended), maximum raw mark 130

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

hbridge.com

	Page 2	Mark Scheme: Teachers' version	Syllabus	
		IGCSE – May/June 2011	0581	
Abbr	eviations		(a)	
cao	correct answer	r only		Dridge
cso	correct solutio	•		196
dep dependent				26
ft	follow through	n after error		On
isw	ignore subsequ	uent working		1
oe	or equivalent			
SC	Special Case			-

Abbreviations

or equivalent oe Special Case SC

without wrong working anything rounding to seen or implied www art soi

Qu.	Answers	Mark	Part Marks
1 (a)	(i) $\frac{1380}{62+53} \times 62$	1	Allow 115 for 62 + 53
	(ii) 7.27 (7.271 to 7.272)	1	
	(iii) 42	2	M1 for $\frac{3150}{75}$ oe
(b)	(i) 235	3	B2 for angle $ACS = 55$ or angle $ACN = 125$ B1 for 55 seen
	(ii) 12.6 (12.58 to 12.59)	3	M2 for $\frac{4}{6} \times 18.9$ or $4+4+2\times4\times\cos55$ or $4+4+2\times4\times\sin35$ oe
			(M1 for $\frac{4}{6}$ soi or $2 \times 4 \times \cos 55$ or
			$2\times4\times\sin35$ soi oe)
(c)	1500	3	M2 for $\frac{1380}{1-0.08}$ oe (M1 for recognition that $92\% = 1380$)

		my.
Page 3	Mark Scheme: Teachers' version	Syllabus
	IGCSE – May/June 2011	0581

		ally
Monday $\frac{3}{5}$, $\frac{2}{5}$	1	ambridge.com
Tuesday $\frac{4}{7}$, $\frac{3}{7}$	1	COM
$\frac{5}{7}$, $\frac{2}{7}$	1	
(i) $\frac{12}{35}$ oe cao	2	M1 $\frac{3}{5} \times \frac{4}{7}$ ft their tree
(ii) $\frac{9}{35}$ oe cao	2	M1 $\frac{3}{5} \times \frac{3}{7}$ ft their tree
(iii) $\frac{19}{35}$ oe	2 ft	ft their (b)(ii) + $\frac{10}{35}$ ft their tree throughout (iii)
		M1 for $\frac{2}{5} \times \frac{5}{7}$ + their (b)(ii)
		or $1 - \frac{3}{5} \times \frac{4}{7} - \frac{2}{5} \times \frac{2}{7}$
$\frac{34}{35}$ oe cao	3	ft their tree throughout (iv)
		M2 for $1 - \frac{2}{5} \times \frac{2}{7} \times \frac{1}{4} \left(= 1 - \frac{1}{35} \right)$
		(M1 for $\frac{2}{5} \times \frac{2}{7} \times \frac{1}{4} \left(= \frac{1}{35} \right)$)
		or M2 for $\frac{3}{5} + \frac{2}{5} \times \frac{5}{7} + \frac{2}{5} \times \frac{2}{7} \times \frac{3}{4}$
		(M1 for any two of these)
3 www	3	M1 for $p = \frac{k}{(m+1)}$ oe A1 for $k = 36$
		or M2 for $4 \times 9 = p \times 12$ oe
(i) $(x+5)(x-5)$	1	
(ii) $\frac{(2x+1)}{(x-5)}$ final answer	3	B2 for factors $(2x+1)(x+5)$ or SC2 for final
		$answer \frac{x + \frac{1}{2}}{x - 5}$
		(B1 for $(2x+a)(x+b)$ where $ab = 5$ or
		$2b + a = 11$ or SC1 for $(x + \frac{1}{2})(x + 5)$)
x < 7 oe final answer	3	M2 for $8x * 56$ where * is inequality or = sign (B1 for $5x - 20$ or $36 - 3x$)
	Tuesday $\frac{4}{7}$, $\frac{3}{7}$ $\frac{5}{7}$, $\frac{2}{7}$ (i) $\frac{12}{35}$ oe cao (ii) $\frac{9}{35}$ oe cao (iii) $\frac{19}{35}$ oe cao 3 www (i) $(x+5)(x-5)$ (ii) $\frac{(2x+1)}{(x-5)}$ final answer	Tuesday $\frac{4}{7}$, $\frac{3}{7}$ $\frac{5}{7}$, $\frac{2}{7}$ 1 (i) $\frac{12}{35}$ oe cao 2 (ii) $\frac{9}{35}$ oe cao 2 (iii) $\frac{19}{35}$ oe $\frac{2}{5}$ 3 (i) $\frac{34}{35}$ oe cao 3 (i) $\frac{34}{35}$ oe for $\frac{3}{35}$ (ii) $\frac{34}{35}$ oe for $\frac{3}{35}$ 3 (iii) $\frac{(x+5)(x-5)}{(x-5)}$ 1 (iii) $\frac{(2x+1)}{(x-5)}$ final answer

	2
Mark Scheme: Teachers' version	Syllabus
IGCSE – May/June 2011	0581

		1	7/2
4 (a)	(i) $(\cos{(HFG)}) = \frac{6^2 + 14^2 - 12^2}{2 \times 6 \times 14}$	M2	M1 for implicit form A1 for 0.5238 ft their (i)
	58.4 (58.41)	A2	A1 for 0.5238
	(ii) $0.5 \times 6 \times 14 \times \sin \text{ (their } 58.4 \text{) oe}$ 35.8 or 35.77 to 35.78	M1 A1 ft	ft their (i) Correct or ft their (i)
(b)	$(\sin(RQP)) = \frac{\sin(117) \times 12}{18}$	M2	M1 for implicit form
	36.4 or 36.44	A1	
5 (a)	(i) Correct translation (see diagram)	2	SC1 for translation by $\begin{pmatrix} -3 \\ k \end{pmatrix}$ or by $\begin{pmatrix} k \\ -2 \end{pmatrix}$
	(ii) Correct reflection (see diagram)	2	SC1 for reflection in $y = -1$
(b)	(i) Stretch, (factor) 3, y-axis or $x = 0$ invariant	1 1 1	
	(ii) Rotation 90° clockwise (1, -1)	1 1 1	Accept –90°
(c)	(i) $\begin{pmatrix} 3 & 0 \\ 0 & 1 \end{pmatrix}$ ft from (b)(i)	2 ft	SC1 for $\begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix}$ (ft from (b)(i)) or $\begin{pmatrix} k & 0 \\ 0 & 1 \end{pmatrix}$
			with k algebraic or numeric but $\neq 1$ or 0
	(ii) Rotation,	1	
	180°	1	
	Origin	1	Accept O or (0,0)
6 (a)	23.6 (23.60)	2	M1 for $14^2 + 19^2$
(b)	2300 or 2303 to 2304 cao	4	M3 for $2 \times \frac{1}{2} \times 14 \times 19 + 14 \times 36 + 19 \times 36 +$ their $BC \times 36$ M2 for 4 of these added M1 for $\frac{1}{2} \times 14 \times 19$
(c)	4788 or 4790 cao	2	M1 their triangle area × 36
(d)	43(.0) or 43.04 to 43.05 cao	2	M1 for (their (a)) ² + 36 ² or $36^2 + 19^2 + 14^2$
(e)	18.9° to 19.02° cao	3	M2 for inv sin $\left(\frac{14}{\text{their }CE}\right)$ or
			inv $\cos\left(\frac{\sqrt{19^2 + 36^2}}{\text{their } CE}\right)$ or complete longer
			methods (M1 for clearly identifying angle <i>CEA</i>)

Page 5 Mark Scheme: Leachers, Version Syllabils	Page 5	Mark Scheme: Teachers' version	Syllabus
---	--------	--------------------------------	----------

			QH,
7 (a)	1(.00) 4(.00) 11.1(1) 1(.00) 0.25	3	B2 for 4 correct, B1 for 3 correct
(b)	10 points plotted Correct shaped curve through 10 points (condone 2 points slightly missed) 2 separate curves not crossing <i>x</i> -axis and not touching or crossing <i>y</i> -axis	P3 ft C1 ft B1	B2 for 4 correct, B1 for 3 correct B2 for 8 or 9 points correct ft B1 for 6 or 7 points correct ft ft their points if shape correct – ignore anything between – 0.6 and 0.6 Independent
(c)	-0.85 to - 0.75 cao 0.75 to 0.85 cao	1 1	
(d)	Tangent drawn (ruled) at $x = 1.5$ - 3 to -2	T1 2	Allow slight daylight Dep on T1 M1 evidence rise/run dependent on tangent SC1 for answer in range 2 to 3 Answer implies M but not the T mark
(e)	(i) $y = x - 2$ oe	1	
	(ii) line ruled to cross curve	2 ft	Dependent on (i) in form $y = mx + c$, $m \ne 0$, $c \ne 0$ B1 for gradient ft or y intercept ft but again to cross curve at all possible points
	(iii) 2.5 to 2.7 cao	1	Dependent on (e)(i) correct
8	14.2	3	M1 for Σfx (10 × 11 + 8 × 12 + 16 × 13 + 11 × 14 + 7 × 15 + 8 × 16 + 6 × 17 + 9 × 18) (1065) (allow one error or omission) M1dep for $\div \Sigma f$ (10 + 8 + 16 + 11 + 7 + 8 + 6 + 9) (75) (allow one further error or omission)
	14 13	2	M1 for 37th, 37.5th or 38th seen
(b)	(i) 21, 30, 15	2	B1 for 2 correct
	(ii) 20 20 10 (10) 1.05 1.5 1.5 (0.9)	3	1, 1, 1 for each correct vertical pair
(c)	$\frac{10 \times 2.5 + 12 \times 3 + 4n}{10 + 12 + n} (= 3.1)$	M2	M1 for either numerator or denominator seen
		1	
	multiplying across and collecting terms	M1	dep on linear numerator and denominator their $(68.2 - 25 - 36)$ = their $(4 - 3.1) \times n$

		May .
Page 6	Mark Scheme: Teachers' version	Syllabus
	IGCSE – May/June 2011	0581

	IGCSE – May/Jui	ne 2011	0581
		T	and
9 (a)	$x \ge 3$ $y \ge 2$	1, 1	A Table
(b)	$x + y \le 9$	1	US81 VACAMADATIGUE.COM.
(c)	$6x + 14y \le 84$	1	
(d)	$x = 3 \qquad y = 2$	1, 1	Accept clear and freehand lines long enough to define the correct quadrilateral
	x + y = 9	2	SC1 for line through (0, 9) or (9, 0)
	Line from (0, 6) to (14, 0) Correct quadrilateral unshaded or clearly	2	B1 for through (0, 6) or (14, 0)
	indicated indicated		
(e)	\$ 70	2	B1 for considering (7, 2)
10(a)	(A 1) 8 27 64 125	2	B1 for 3 correct
	(B 4) 8 12 16 20 (C 4) 9 16 25 36	1 2	B1 for 3 correct
(b)	512 169	1 1	
(a)	25		
(c)	99	1 1	
(d)	145 $n^3 + 4n$ oe 16 $(n+1)^2 - 4n$ oe but isw	1, 1 1, 1	Likely oe is $(n-1)^2$