WWW. Papa

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the May/June 2011 question paper for the guidance of teachers

0581 MATHEMATICS

0581/43

Paper 4 (Extended), maximum raw mark 130

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

			Syllahus M. D. r	
	Page 2	Mark Scheme: Teachers' version	Syllabus r	
		IGCSE – May/June 2011	0581	
Abbr	eviations		Cambridge	
cao	correct answ	wer only	OH:	
cso	correct solu	ation only	Se l	
dep	dependent		200	
ft	follow thro	ugh after error		2
isw	ignore subs	equent working		7
oe	or equivale	nt		
SC	Special Cas	se		

Abbreviations

without wrong working anything rounding to seen or implied www art soi

Qu.	Answers	Mark	Part Marks
1 (a)	(i) 34.65 (ii) 41.58 (iii) 264	1 2 3	M1 for 0.15×277.2 implied by 41.6 or 41.58 seen and not spoiled M2 for $277.2 \div (1 + 0.05)$ o.e. or M1 for recognition that $105(\%) = 277.20$
(b)	(i) 1000 (ii) 3650	2 2	M1 for 2200 ÷ (2 + 4 + 5) × 5 M1 for 2200 ÷ 44 × 73
2 (a)	(i) Image at (4, -4), (6, -4), (6, -6), (2, -6) (ii) Image at (-4, -4), (-4, -6), (-6, -6), (-6, -2)	2 2 ft	SC1 for reflection in <i>y</i> -axis SC1 ft if rotated 90° anti-clockwise about (0, 0)
	(iii) Reflection $y = -x$	1 ft 1 ft	ft their Z (name of transformation) independent (full details)
(b)	(i) Image at (2, 2), (3, 2), (3, 3), (1, 3)	2	SC1 for enlargement s.f. 0.5 with correct orientation, different centre or $sf - 0.5$, centre $(0, 0)$
	(ii) $\begin{pmatrix} 0.5 & 0 \\ 0 & 0.5 \end{pmatrix}$ cao	2	B1 B1 each column
(c)	(i) Image at $(0, 4), (2, 4), (0, 6), (-4, 6)$ (ii) $\begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$	2 2	SC1 if 3 vertices correct SC1 for $\begin{pmatrix} 1 & k \\ 0 & 1 \end{pmatrix}$, $k \neq 0$ but can be algebraic or
			numeric or for $\begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}$

		May May 1
Page 3	Mark Scheme: Teachers' version	Syllabus
_	IGCSE – May/June 2011	0581
·	-	Car.

		1	My My
3 (a)	$(x+5)^2 - 2x^2 = 1$ oe	M1	Equiv means equation in the three parts, allowing $(x + 5)^2$ expanded
	$(x+5)^2 = x^2 + 10x + 25$ or $x^2 + 5x + 5x + 25$	B1	To the state of th
	$x^{2} + 10x + 25 - 2x^{2} = 1$ $0 = x^{2} - 10x - 24$	E1	For final line reached without any errors or omissions after any previous line with $(x + 5)^2$ expanded
(b)	12	3	M2 for $(x-12)(x+2)$ or full correct expression from formula. Allow SC1 for $(x+a)(x+b)$ and $ab = -24$ or $a+b=-10$ then SC1 ft (dependent on quadratic factors or two roots from formula) for correct selection of +ve root, if only one +ve. Answer of 12 and -2 scores M2 only
(c)	53.1 to 53.2 www 3	3	M2 for $2 \times \tan^{-1}(\frac{1}{2})$ o.e. i.e. any complete method or M1 for $\tan = \frac{1}{2}$ o.e. i.e. any correct method leading to any angle in diagram (expressions can be implicit and bod which angle is being worked out) (Implied by 26.56 to 26.57 or 26.6, 63.43 to 63.44 or 63.4, 126.8 to 126.9) 53 or 127 without working score 0
4 (a)	$(\cos(A)) = \frac{6^2 + 8^2 - 9^2}{2.6.8}$	M2	M1 for correct implicit equation with cosA
	78.58 www 4	A2	A1 for 0.1979 to 0.198 (this implies M2)
(b)	(i) 78.6	1	Allow 78.58
	(ii) $r = \frac{4.5}{\sin(78.6)}$ oe	M2	(M1 for $\sin(78.6) = \frac{4.5}{r}$)
	4.59 0 to 4.591 cao www 3	A1	Allow 78.58 or their angle <i>BOM</i> for M2 or M1
(c)	35.5 (35.48 to 35.57) cao www 4	4	M1 Area triangle = $0.5 \times 6 \times 8 \times \sin(78.6)$ oe Allow 78.58 (23.52) M1 Circle = $\pi \times 4.59^2$ Allow 4.590 to 4.591 (66.15 to 66.22) M1 (dependent) % = triangle / circle × 100 Dependent on first 2 M's

																44	2	-		
Page 4 Mark Scheme: Teachers' version Syllabus	rs' versi	eachers	eache	ache	cher	ers	rs'	, v	ver	rsio	n		Sy	llab	us		. 4	3	1	[
IGCSE – May/June 2011 0581	2011	y/June	y/Jun	/Jun	lune	ne 2	e 2	201	11				(581				10	0_	-

		ı	SATA.
5 (a)	9.11, 4.25, 2,, 2, 4.25, 9.11	3	B2 for 4 or 5 correct and B1 for 2 or 3 corr
(b)	12 points plotted Smooth curve through 12 points Two branches, neither touching <i>y</i> -axis	5	B2 for 4 or 5 correct and B1 for 2 or 3 correct and B1 for 2 or 3 correct shape ft their points, P1 for 8 or 9. C1 correct shape ft their points shape same. Ignore anything between – 0.5 and 0.5. B1 independent
(c)	(i) $x = 0$ (ii) tangent at -1.5 -3 to -1.8	1 T1 2	Dependent on tangent M1(also dep on T1) for attempt at rise/run or SC1 for 1.8 to 3
	(iii) $-1.7 \text{ to } -1.55, -0.7 \text{ to } -0.55,$ 0.55 to 0.7, 1.55 to 1.7 (iv) $y = 2x$ drawn to meet graph twice 1 1.8 to 1.9	2 B1 B1 B1	B1 for 1 or more correct
6 (a)	(i) 5.8 (ii) 4.6 to 4.65 (iii) 2.35 to 2.5 (iv) 172 or 171	1 1 1 2	SC1 for 28 or 29
(b)	(i) 72 to 76, 38 to 42 (ii) Their correct $\Sigma fx \div 200$	2 4	Must be integers. B1 either. M1 for 3 or 4 correct mid-values seen 2, 5, 6.5, 8.5 M1 for Σfx , ft their frequencies and x anywhere in interval, including boundaries $36 \times 2 + (72 \text{ to } 76) \times 5 + (38 \text{ to } 42) \times 6.5 + 50 \times 8.5$ M1 for \div 200 or their 200 (dependent on second M1) (74, 40 give 1127 then 5.635 (or 5.64 or 5.63)) Other pairs of frequencies from (b)(i) must have a sum of 114 to gain the A mark.
	(iii) $p \div 2$, q , where p , q are from (b)(i) Histogram with two new columns of correct width Two correct heights	2ft 2ft	B1 either ft (ft their table) B1 B1 ft (ft their freq. densities)

						m	
P	age 5	Mark Schem	e: Teachers	' ve	rsion	Syllabus	· 10
		IGCSE -	- May/June 2	1	0581	TO TO	
7 (a)	Correct tree	diagnone			D1 for labels	flower and not flower	Cambr

		1	7%
7 (a)	Correct tree diagram.	5	B1 for labels flower and not flower First pair B1 for $\frac{7}{10}$ and $\frac{3}{10}$ B1 for next three branches after flowers B1 for clear labels for colours B1 for $\frac{2}{3}$, $\frac{1}{4}$ and $\frac{1}{12}$ in correct places If three branches at ends of both branches of first pair, lose final B, unless probabilities of 0 indicated.
(b)	$\frac{33}{40}$ o.e. (0.825) cao	3	M2 for $1 - \frac{7}{10} \times \frac{1}{4}$ (M1 for $\frac{7}{10} \times \frac{1}{4}$ or $\frac{7}{10} \times (1 - \frac{1}{4})$) oe or M2 for $\frac{3}{10} + \frac{7}{10} \times \frac{2}{3} + \frac{7}{10} \times \text{their } \frac{1}{12}$ or $\frac{3}{10} + \frac{7}{10} \times \frac{3}{4}$ oe
(c)	7 cao	2	M1 for $120 \times \frac{7}{10} \times \text{their } \frac{1}{12}$
8 (a)	Arc centre D, radius 6 cm	1	
(b)	(i) Perp bisector of AB, with two pairs of arcs(ii) Bisector of angle B, with arcs	2 2	At least 3 cm from AB. SC1 accurate without arcs or accurate arcs (but no choice) At least 5 cm from B. SC1 accurate without arcs or accurate arcs (but no choice)
(c)	(i) Q at intersection of loci (ii) 2.7 cm to 2.9 cm cao	1 1	Dependent on at least both SC1's Dependent on (c)(i)
(d)	Region inside arc, to left of perp bisector and below angle bisector	1	Dependent on at least both SC1's in (b)
9 (a)	(i) 81 (ii) 8.5	2 2	B1 for (f(2) =) 7 B1 for (f(0.5) =) 2.5
(b)	$\frac{x-1}{3}$ oe	2	M1 for $(x =)$ $\frac{y-1}{3}$ or $(x =)$ $\frac{f(x)-1}{3}$ or $3y = x-1$ or $3f(x) = x-1$ or -1 then $\div 3$ in flowchart (must be clear)
(c)	$3x^2 + 12x + 13 \text{ final answer}$	2	M1 for $3(x+2)^2 + 1$ or better
(d)	$(x =) \frac{-3 \pm \sqrt{3^2 - 4(1)(1)}}{2(1)}$	2	B1 for $\sqrt{3^2 - 4(1)(1)}$ or better Seen anywhere If in form $\frac{p + \sqrt{q}}{r}$ or $\frac{p - \sqrt{q}}{r}$ oe,
	-2.62, -0.38 final answer	1,1	B1 for $p = -3$ and $r = 2(1)$ or $(x + \frac{3}{2})^2$ B1 then $\sqrt{\frac{9}{4} - 1}$ B1 If 0, SC1 for -2.6 or -2.62 or -2.618 and $-0.4(0)$ or -0.38 or -0.382 to -0.381 seen Answers only B1 B1

		May .
Page 6	Mark Scheme: Teachers' version	Syllabus
	IGCSE – May/June 2011	0581

			6
10 (a)	(i) (a) p+q	1	The state of the s
	(b) $\frac{1}{2}$ p $-\frac{1}{2}$ q oe	2	M1 for $\overrightarrow{LC} + \overrightarrow{CM}$ o.e. can be written in the of \mathbf{p} and/or \mathbf{q} M1 for $\overrightarrow{AD} + \overrightarrow{DL} + \overrightarrow{LN}$ o.e can be written in
	(c) $\frac{3}{4}$ p $+\frac{3}{4}$ q oe cao	2	M1 for $\overrightarrow{AD} + \overrightarrow{DL} + \overrightarrow{LN}$ o.e can be written in terms of p and/or q ft their (i)(b)
	(ii) \overrightarrow{AN} is a multiple of \overrightarrow{AC} o.e	1	Must be vectors (dependent on answers to (a), (c))
(b)	(i) 30 (ii) 135	2 1 ft	M1 for $2x + x + 15 + 75 = 180$ or better ft 165 – their x but only if final answer obtuse
11 (a)	(i) 10	1	
	(ii) $\frac{3\times 4}{2}$ or $\frac{3\times (3+1)}{2}$ (= 6)	1	
	(iii) 7260	1	
	(iv) 12 840	2	M1 for $S_{200} - S_{120}$ (20100 – 7260) or $\frac{80}{2}$ (121 + 200) o.e.
	(v) 160 400	2	M1 for $2(1+2+3+\ldots+400)$ o.e.
(b)	(i) 36, 100 (ii) 11025	1, 1 1	Ignore right-hand column
	(iii) $\left\lceil \frac{n(n+1)}{2} \right\rceil^2$ oe	1	isw
	(iv) 3 348 900	1	M1 for square root then × 2 (1056)
	(v) 32	2	or SC1 for answer 33