WWW. Palls

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the October/November 2011 question paper for the guidance of teachers

0581 MATHEMATICS

0581/41

Paper 4 (Extended), maximum raw mark 130

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

I	Page 2	Mark Scheme: Teachers' version	Syllabus 7	
		IGCSE – October/November 2011	0581	
			Car	
bbre	eviations		3/4	
ao	correct answe	er only	andi	2
so	correct solution	on only		Sec.
ер	dependent			ici
;	follow throug	h after error		On
SW	ignore subseq	uent working		1
e	or equivalent			
C	Special Case			

Abbreviations

correct answer only correct solution only cao cso

dependent dep

oe Special Case SC

without wrong working anything rounding to seen or implied www art soi

Qu.		Answers	Mark	Part Marks
1	(a)	(i) 4950	2	M1 for 9000 × 0.55 oe
		(ii) 9:11	1	Accept 1 : 1.22 or 0.818 : 1 After 4050 in (a)(i) allow SC1 for 11 : 9 etc
	(b)	1504	1	
		564	1	
		188	1	After 0 scored M1 for $2256 \div (8 + 3 + 1)$ soi
	(c)	(i) 6847.99 or 6848 or 6850	3	M2 for 15000×0.77^3 oe (6847. ()ww imp M2) or M1 for 15000×0.77^2 oe soi (8893.5) After 0 scored SC1 for art 27913 or 27910 or 27900
		(ii) 54.3 (54.33 to 54.35)	3ft	ft their (15000 – their (c)(i))/15000 × 100 to 3sf or better but not for negative answer or from 4650 in (c)(i) leading to 69% M2 for 1 – 0.77³ (0.543) or their (15000 – their (c)(i))/15000 (× 100) or SC2ft their (c)(i)/15000 × 100 correctly evaluated (45.65 to 45.67 or 45.7) or M1 for 0.77³ (0.4565) or their (c)(i)/15000

		m.
Page 3	Mark Scheme: Teachers' version	Syllabus
	IGCSE – October/November 2011	0581

2	(-) 0 1 2 2		A databased and an armonic and armonic armonic armonic and armonic armonic and armonic armonic armonic and armonic armonic armonic armonic armonic armonic armonic armonic and armonic armon
•	(a) 0, 1, 2, 3	3	Additional values count as errors B2 for one error/omission or B1 for two error omissions After B0 , M2 for $-1 < x \le 3.5$ seen, allow $7/2$ for 3.5
			omissions
			After B0 ,
			or M1 for $-1 < x$ or $x \le 3.5$ or $x = -1$ and $x = 3.5$
			Allow M2 for $0 \le x < 4$ or M1 for $x \ge 0$ or $x < 4$
	(b) $\frac{x-2}{x-5}$ www final answer	4	M3 for $\frac{(x+5)(x-2)}{(x+5)(x-5)}$
	$\frac{(b)}{x-5}$ www initial answer	4	(x+5)(x-5)
			or M2 for $(x + 5)(x - 2)$ seen
			or M1 for $(x + a)(x + b)$ where $ab = -10$ or $a + b = 3$
			and M1 for $(x + 5)(x - 5)$ seen
	(a) (b) $f(x+1) + 2(x+2) = 2(x+1)(x+2)$	N/1	Allow if still over common denominator
	(c) (i) $5(x+1)+2(x-3)=3(x+1)(x-3)$ oe	M1	Allow II still over common denominator
	$x^2 - 3x + x - 3$ or better seen	B 1	Allow $x^2 - 2x - 3$ seen or $3x^2 - 9x + 3x - 9$ or
	$x^2 - 3x + x - 3$ of better seen	D1	Allow $x^2 - 2x - 3$ seen of $3x^2 - 9x + 3x - 9$ of better seen
	$3x^2 - 13x - 8 = 0$	E 1	
	$3x^2 - 13x - 8 - 0$	LI	With no errors seen and brackets correctly expanded on both sides
			enpulated on soul states
	(ii) $\frac{-(-13) \pm \sqrt{(-13)^2 - 4(3)(-8)}}{2(3)}$	B 1	In square root B1 for $(-13)^2 - 4(3)(-8)$ or better
	2(3)	B 1	(265)
			$p + \sqrt{a}$ $p - \sqrt{a}$
			If in form $\frac{p+\sqrt{q}}{r}$ or $\frac{p-\sqrt{q}}{r}$,
			B1 for $-(-13)$ and 2(3) or better
	4.88 and -0.55 cao	B1B1	SC1 for 4.88 and – 0.55 seen or – 0.5 and 4.9
			or -0.546 and 4.879 to 4.880

		32
Page 4	Mark Scheme: Teachers' version	Syllabus
	IGCSE – October/November 2011	0581

		,			O to the state of
3	(a)	` '	$1.6 < h \le 1.7$	1	Condone alt. notation used for class
		(ii)	$\{1.35 \times 4 + 1.45 \times 13 + 1.55 \times 33 + 1.65 \times 45 + 1.75 \times 19 + 1.85 \times 6\} \div 120$	M3	Condone alt. notation used for class (194/120) M1 for mid-values soi (allow one slip) and M1 for use of $\sum fx$ with x in correct interval (allow one more slip) and M1 depend on 2nd M for dividing by 120
			1.62 or 1.616 to 1.617	A1	www4
	(b)	(i)	$\frac{6}{120}$ oe	1	Accept dec/% to 3 sf or better but not ratio isw cancelling/conversion (also for (ii))
		(ii)	$\frac{2147}{2380}$ oe $(0.902(1))$	3	M2 for $\frac{k}{120} \times \frac{k-1}{119}$ where $\frac{k}{120}$ is 1 – their (b)(i) or if $k = 114$ or M1 for 1 – their (b)(i) or for 114/120 seen After 0 scored SC2 for ans 1/476 oe or SC1 for 6/120 × 5/119
	(c)	(i)	95, 120	1	
		(ii)	Plots 7 points correctly exact or in correct square	P2ft	P1ft for 5 or 6 correct plots
			Curve or lines through 7 points	C1ft	ft their increasing curve within 1 mm of points
	(d)	(i)	1.61 to 1.63	1ft	ft their 60th reading on inc. curve to nearest 0.01
		(ii)	1.555 to 1.57	1ft	ft their 36th reading on inc. curve
1	(a)	(i)	$2.7 \times \frac{20}{12}$ oe = 4.5	E2	M1 for (SF =) 20/12 or 12/20 (but not from 2.7/4.5 or 4.5/2.7)
		(ii)	$1/3\pi \times 4.5^2 \times 20 - 1/3\pi \times 2.7^2 \times 12$ or $(1 - (3/5)^3) \times 1/3\pi \times 4.5^2 \times 20$ oe	М3	M1 for $1/3\pi \times 4.5^2 \times 20$ (424 or 135π) and M1 for $1/3\pi \times 2.7^2 \times 12$ (91.6or 29.16 π)
			332.3 to 332.6 or 332 or 333	A1	
	(b)	(i)	$8^2 + (4.5 - 2.7)^2$ oe	M1	e.g. Alt: $20^2 + 4.5^2$ and $12^2 + 2.7^2$
			sq root	M1	Dep on 1st M1 Alt: 20.5 – 12.3 Other complete correct methods are M2
			8.2	E1	No errors seen
		(ii)	185 or 186 or 185.5 or 185.45 to 185.51	5	M4 for $\pi \times 4.5 \times 20.5 - \pi \times 2.7 \times 12.3$ or other complete correct method or M3 for $\pi \times 4.5 \times 20.5$ or $\pi \times 2.7 \times 12.3$ (290 or 92.25π) (104.3or 33.21π) or B2 for (slant height of large cone =) 20.5 or (slant height of removed cone =) 12.3 or M1 for $\sqrt{4.5^2 + 20^2}$ or $\sqrt{2.7^2 + 12^2}$ or 12/8 × 8.2 oe or 20/8 × 8.2 oe

Page 5 Wark Scheme: Teachers Version Syllabus	Page 5	Mark Scheme: Teachers' version	Syllabus
---	--------	--------------------------------	----------

5	(a)	1, -1, 3.5	1,1,1	On
	(b)	10 correct points plotted	P3ft	P2ft for 8 or 9 correct P1ft for 6 or 7 correct Allow points to be implied from curve
		Smooth curve through at least 8 points and correct shape	C1ft	Correct cubic shape, not ruled
	(c)	(i) -2.2 to -2.1	1ft	Correct or ft their x values
		−0.65 to −0.45	1ft	
		2.5 to 2.7	1ft	If ft and more than 3 solns then 2 marks maximum
		(ii) $(k <) -4 \text{ to } -3.7$	1ft	Correct or ft their graph for y values at max and min
		(k >) 1.7 to 2	1ft	After 0 scored SC1 for both correct but reversed
	(d)	(i) Ruled line gradient 3 and y-intercept -2 over the range -1 to 3.5	3	B2 for correct but freehand or short or M1 for a ruled line of gradient 3 or passes through $(0, -2)$ (but not $y = -2$)
		(ii) $(a =) -12, (b =) 2$	1,1	After 0, M1 for x^3 – $6x$ – $6x$ – $2 + 4$ (=0) or better
		(iii) 0.1 to 0.2 and 3.3 to 3.4 cao	1,1	
-	(a)	$120^2 + 95^2 - 2 \times 120 \times 95 \times \cos 77$	M2	M1 for implicit version
		135.26 or 135.3	E2	A1 for 18295 to 18297
	(b)	$(\sin B) = \frac{\text{their } 135 \times \sin 26}{79}$	M2	M1 for $\frac{\sin B}{\text{their } 135} = \frac{\sin 26}{79}$ oe
		48.5 to 48.7 isw	A1	
		131 or 131.3 to 131.5 www4	B1ft	ft for 180 – their 48.5 to 48.7 dep on sine rule or sine used
	(c)	(Angle $A =$) 22.5 to 22.7	B1ft	ft 154 – their (b) , also accept angle $B = 67.3$ to 67.5 (ft their (b) – 64)
		'Path'/79 = \sin (their A) oe	M1	Dep on B1 and their $A < 90$ eg 79 cos 67.4
		30.2 to 30.5 www3	A1	
	(d)	$\frac{1}{2} \times 120 \times 95 \times \sin 77 \text{oe}$	M1	(5554)
		Their area ÷ 180	M1	Dep on area attempt
		30.8 to 30.9	A1	
		30	B1ft	ft their 30.8 to 30.9 truncated dep on at least M1 earned After M2 answer 30 www scores A1B1
				Answer 30 ww scores 0

Page 6 Mark Scheme: Teachers' version Syllabus IGCSE – October/November 2011 0581			Mary
IGCSE – October/November 2011 0581	Page 6	Mark Scheme: Teachers' version	Syllabus
		IGCSE – October/November 2011	0581

7 (a)	(a)	(i)	Reflection only	B 1	Spoilt if extras
			y = -2	B1	130
		(ii)	Enlargement only	B1	Spoilt if extras Spoilt if extras
			$\frac{1}{2}$	B1	
			(1, 4)	B1	
		(iii)	Rotation only	B 1	Spoilt if extras
			90° clockwise oe	B1	Accept –90° or (+)270°
			Around $(1, -3)$	B1	
	(b)	(i)	Triangle at (-4, 4), (-1, 4), (-1, 5)	2	B1 for translation of $\begin{pmatrix} -5 \\ k \end{pmatrix}$ or $\begin{pmatrix} k \\ 2 \end{pmatrix}$
					After B0 , SC1 for translation of 5 small squares to the left and 2 small squares up
		(ii)	Triangle at (4, 4), (1, 4), (4, 6)	3	B1 for each of (4, 4) or (4, 6) plotted If no/wrong plots allow SC2 for 3 correct coordinates shown in working or SC1 for any 2 correct coordinates shown or M1 for $\begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 1 & 4 & 4 \\ 2 & 2 & 3 \end{pmatrix}$ shown
	(c)	Stre	tch only	B1	Spoilt if extras
		(Fac	etor) 2	B1	
		x-ax	is oe invariant	B1	

Down 7	Mayle Cahamas Tagahaya' yayaigu	Cullabura
Page 7	Mark Scheme: Teachers' version	Syllabus
	IGCSE – October/November 2011	0581

8 (a)	(i) There are up to 5 large coaches oe	1	E.g. can't hire more than 5 large coaches The maximum is 5 large coaches The large coaches are less than or equal to 5 No errors Allow in words provided clear
	(ii) $50x + 30y \ge 300$ oe	E2	No errors Allow in words provided clear e.g. 50 in large coaches and 30 in small coaches must equal 300 seats or more M1 for associating 50 with x or large coaches and 30 with y or small coaches
(b))		Freehand lines –1 pen once. All lines must be long enough to make full boundary of their region accept dashed or solid lines
	x = 5 ruled	L1	
	x + y = 10 ruled	L1	
	5x + 3y = 30 ruled	L2	L1 for ruled line with intercepts at (0, 10) or (6, 0) within 2mm by eye at intercepts (extend if line is short)
	Correct region indicated cao	R1	Allow if slight inaccuracy(s) in diagonal lines Allow any clear indication of region
(c)) (i) 5 2	1 1	After 5 and 2 in working ignore attempts to calculate costs
	(ii) 2950	1ft	ft their 5×450 + their 2×350 provided positive integers
9 (a)	(i) $2 \times 3 \times 3 \times 7$ oe	2	M1 for prime factors of 2,3,3,7 shown condone 1('s) shown as well for method only
	(ii) 18	1	
	(iii) 504	2	M1 for other multiples of 504 or $2 \times 2 \times 2 \times 3 \times 3 \times 7$ oe shown If (ii) and (iii) both correct but reversed allow SC1
(b)	3.028 or 3.029 cao	4	B3 for 3.0289(85) or M1 for their 105/their 34 (their 105 in range 104 to 106 and their 34 in range 33 to 35) and B1 for 104.5 or 34.5 or 34.499 selected
(c)	$\pi r^2 \text{ their } h = \text{their } V$	M1	Where V is in range 540 to 560 and h is in range 11 to 13
	$(r^2 =) \frac{\text{their } V}{\pi \times \text{their } h}$	M1	Implies previous method (15.36 implies M2) If using 545 and 12.5 then 13.88 (leading to 3.73) If using 550 and 12 then 14.59 (leading to 3.82)
	Sq root	M1	Dep on M2 , can be implied from answers
	Selects 555 or 554.99 and 11.5	B1	Indep
	3.919 cao	A1	If trials then 5 or 0