CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

www.PapaCambridge.com MARK SCHEME for the October/November 2013 series

0606 ADDITIONAL MATHEMATICS

0606/12 Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

®® CAMBRIDCE

			-	
Page 2	Mark Scheme	Syllabus	.0	V
	IGCSE – October/November 2013	0606	100	

Mark Scheme Notes

Marks are of the following three types:

- Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Accuracy mark for a correct result or statement independent of method marks.
- When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol
 [↑] implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously 'correct' answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2, 1, 0 means that the candidate can earn anything from 0 to 2.

Page 3	Mark Scheme	Syllabus	· 03.
	IGCSE – October/November 2013	0606	73

1	a = 3, b = 2, c = 1	B1, B1, B1 [3]	B1 for each
2	Using $b^2 - 4ac$, $9 = 4 (k + 1)^2$ $4k^2 + 8k - 5 = 0$	M1 DM1	M1 for any use of b ² – 4ac DM1 for solution of their quadratic in k
	$k = -\frac{5}{2}, \frac{1}{2}$	A1	A1 for critical value(s), $\frac{1}{2}$ not necessary
	To be below the x-axis $k < -\frac{5}{2}$	A1 [4]	A1 for $k < -\frac{5}{2}$ only
	Or: $\frac{dy}{dx} = 2(k+1)x - 3$ when $\frac{dy}{dx} = 0$, $x = \frac{3}{2(k+1)}$		
	$y = (k + 1)\frac{9}{4(k + 1)^2} - \frac{9}{2(k + 1)} + (k + 1)$		
	To lie under the x-axis, y < 0 $(k + 1)\frac{9}{4(k + 1)^2} - \frac{9}{2(k + 1)} + (k + 1) < 0$	M1	M1 for a complete method to this point.
	leading to $9 = 4(k + 1)^2$ or equivalent then as for previous method		

Page 4	Mark Scheme	Syllabus	· 6
	IGCSE – October/November 2013	0606	100

$\frac{1+\sin \frac{1}{\cos x} + \frac{\cos \frac{1}{1+\sin x} + \frac{(1+\sin x)^2 + \cos^2 x}{\cos x} + \frac{(1+\sin x)^2 + \cos^2 x}{\cos x}}{\cos x + \sin x}$	M1	M1 for dealing with the fractions, denominator must be correct, be generous with numerator
$=\frac{2+2\sin}{\cos\left(1+\sin\right)}$	DM1	M1 for expansion and use of $\cos^2 + \sin^2 = 1$
$=\frac{2(1+\sin)}{\cos (1+\sin)}$	DM1	M1 for attempt to factorise
= 2 sec	A1 [4]	A1 for obtaining final answer correctly
Alternative solution: $\sec + \tan + \frac{1}{\sec + \tan}$ $= \frac{(\sec + \tan)^2 + 1}{\sec + \tan}$ $= \frac{\sec^2 + 2\sec \tan + \tan^2 + 1}{\sec + \tan}$	M1	M1 for dealing with the fractions
$= \frac{2\sec^2 + 2\sec \tan}{\sec + \tan}$ $= \frac{2\sec (\sec + \tan)}{\sec + \tan}$	DM1	M1 for expansion and use of $tan^2 + 1 = sec^2$ DM1 for attempt to factorise
= 2sec	A1	A1 for obtaining final answer correctly
4 (i) n (A) = 3	B1 [1]	If elements listed for (i), then they must be correct elements to get B1 leading to n (A) = 3. If they are not listed and correct answer given then B1.
(ii) n (B) = 4	B1 [1]	If elements listed for (ii), then they must be correct elements leading to n (B) = 4 to get B1. If they are not listed and correct answer given then B1.
(iii) A B = {60°, 240°, 300, 420°, 600°}	B1 [1]	Follow through on any sets listed in (i) and (ii). Do not allow any repetitions.
(iv) A B = {60°, 420°}	B1 [1]	Follow through on any sets listed in (i) and (ii).

Page 5	Mark Scheme	Syllabus	.03
	IGCSE – October/November 2013	0606	100

	Г	6
5 (i) $9x - \frac{1}{3}\cos 3x (+c)$	B1, B1, B1	B1 for 9x, B1 for $\frac{1}{3}$ or cos3x
	[3]	B1 for $-\frac{1}{3}$ cos3x
		Condone omission of + c
(ii) $9x - \frac{1}{3}\cos 3x$		
$= 9 - \frac{1}{3}\cos 3 - \frac{1}{3}\cos \frac{\pi}{3}$	M1	M1 for correct use of limits in their answer to (i)
$= 8 + \frac{1}{2}$	A1, A1 [3]	A1 for each term
6 f $\frac{1}{2} = \frac{a}{8} + 1 + \frac{b}{2}$ 2	M1	M1 for substitution of $x = \frac{1}{2}$ into f (x)
leading to $a + 4b - 8 = 0$	A1	A1 for correct equation in any form
f(2) = 2f(-1)	M1	M1 for attempt to substitute $x = 2$ or $x = -1$ into $f(x)$ and use $f(2) = \pm 2f(-1)$ or $2f(2) = \pm f(-1)$
8a + 16 + 2b - 2 = 2(-a + 4 - b - 2)	A1	A1 for a correct equation in any form
leading to $10a + 4b + 10 = 0$ or equivalent $a = 2, b = \frac{5}{2}$	DM1 A1 [6]	DM1 (on both previous M marks) for attempt to solve simultaneous equations to obtain either a or b A1 for both correct

Page 6	Mark Scheme	Syllabus	· 6
	IGCSE – October/November 2013	0606	100

		8
7 (a) (i) 360	B1	ambridge
(ii) 120	[1] B1	The state of the s
(b) (i) 924	[1] B1	
(ii) 28	[1] B1	
	[1]	
(iii) 924 $-({}^{8}C_{3}^{4}C_{3})-({}^{8}C_{2}^{4}C_{4})$ (i.e. 924 $-$ 3M 3W $-$ 2M 4W)	M1	M1 for 3 terms, at least 2 of which must be correct in terms of C notation or evaluated.
924 – 224 – 28	A1 A1	A1 for any pair (must be evaluated) A1 for final answer
= 672	[3]	AT for final answer
Or: $4M \ 2W \ ^8C_4 \times ^4C_2 = 420$	M1	M1 for 3 terms, at least 2 of which must be correct in terms of C notation or evaluated.
5M 1W ${}^{8}C_{5} \times {}^{4}C_{1} = 224$ 6M ${}^{8}C_{6} = 28$	A1	A1 for any pair (must be evaluated)
Total = 672	A1	A1 for final answer
8 (i)	B1	B1 for correct shape
	B1	B1 for (-3, 0) or -3 seen on graph
	B1	B1 for (2, 0) or 2 seen on graph
	B1	B1 for (0, 6) or 6 seen on graph or in a table
1 05	[4]	
(ii) $\frac{1}{2}$, $\frac{25}{4}$	B1, B1 [2]	B1 for each
	[4]	
(iii) $k > \frac{25}{4}$ or $\frac{25}{4} < k$ (14)	B1	
4 4	[1]	

Page 7	Mark Scheme	Syllabus	.03
	IGCSE – October/November 2013	0606	100

				- Si
9	(a)	$12x^2 \ln(2x+1) + 4x^3 \frac{2}{2x+1}$	M1 A2, 1, 0 [3]	M1 for differentiation of a correct p –1 for each error
	(b)	(i) $\frac{dy}{dx} = \frac{(x+2)^{\frac{1}{2}}2 - 2x(x+2)^{-\frac{1}{2}}\frac{1}{2}}{x+2}$	M1, A1	M1 for differentiation of a quotient involving $(x + 2)^{\frac{1}{2}}$
		$=\frac{(x+2)^{-\frac{1}{2}}}{(x+2)}(2(x+2)-x)$	DM1	A1 all correct unsimplified DM1 for attempt to simplify
		$=\frac{x+4}{\left(x+2\right)^{\frac{3}{2}}}$	A1 [4]	A1 for correct simplification to obtain the given answer
		Or: $\frac{dy}{dx} = 2x \qquad \frac{1}{2} (x+2)^{-\frac{3}{2}} + (x+2)^{-\frac{1}{2}} (2)$	M1, A1	M1 for differentiation of a product involving $(x + 2)^{-\frac{1}{2}}$
		$=(x+2)^{-\frac{3}{2}}(2(x+2)-x)$		A1 all correct unsimplified
		$= \frac{x + 4}{(x + 2)^{\frac{3}{2}}}$	DM1 A1	DM1 for attempt to simplify A1 for correct simplification to obtain the given answer
	(ii)	$\frac{10x}{\sqrt{x+2}} \ (+c)$	M1,A1 [2]	M1 for $\frac{1}{5} \times \frac{2x}{\sqrt{x+2}}$ or $5 \times \frac{2x}{\sqrt{x+2}}$ A1 correct only, allow unsimplified. Condone omission of + c
	(iii)	$\frac{10x}{\sqrt{x+2}} \Big _{2}^{7} = \frac{70}{3} \frac{20}{2}$	M1	M1 for correct application of limits in their answer to (b)(ii)
		$=\frac{40}{3}$	A1 [2]	
	(iii)	. 2	A1	M1 for correct application of limits in their

Page 8	Mark Scheme	Syllabus	· 03.
	IGCSE – October/November 2013	0606	73

	62.
B1 [1]	M1 for attempt at a perp gradient
M1	M1 for attempt at a perp gradient
M1, A1	M1 for attempt at straight line equation, must be perpendicular and passing through B.
[3]	A1 allow unsimplified
20 M1 40	M1 for attempt to obtain relationship using an appropriate length and the point $(1, 4)$ or $(-3, 2)$
A1	A1 for a correct equation
x + 6, DM1	DM1 for attempt to solve with $y = -2x + 6$ and obtain a quadratic equation in terms of one variable only
DM1 A1, A1 [6]	M1 for attempt to solve quadratic A1 for each 'pair'
B1	May be implied
M1 A1, A1	M1 for correct approach A1 for each element correct
A1,A1	A1 for each element correct
	[1] M1 M1, A1 [3] 20 M1 40 A1 + 6, DM1 DM1 A1, A1 [6] B1 M1 A1, A1

Page 9	Mark Scheme	Syllabus	· 03
	IGCSE – October/November 2013	0606	100

11 (a) (i) 4 3 4 3	B1 [1]	ambridge com
(ii) $A^2 = \frac{16}{12} \cdot \frac{9}{13}$	B1, B1 [2]	B1 for any 2 correct elements B1 for all correct
(iii) B is the inverse matrix of A ² $= \frac{1}{100} \frac{13}{-12} \frac{-9}{16}$	■B1, ■B1 [2]	Follow through on their A ²
(b) det C = $x(x - 1) - (-1)(x^2 - x + 1)$ = $2x^2 - 2x + 1$	M1 A1	M1 for attempt to obtain det C A1 for this correct quadratic expression from a correct det C
$b^2 - 4ac < 0, 4 - 8 < 0$	DM1	DM1 for use of discriminant or attempt to solve using the formula, or attempt to complete the square in order to show there are no real roots.
No real solutions (so det C 0)	A1 [4]	A1 for correct reasoning or statement that there are no real roots.

Page 10	Mark Scheme	Syllabus	. A
	IGCSE – October/November 2013	0606	123

				1		NA1 for substitution of either u
12	(a)	(i)	f(-10) = 299, $f(8) = 191Min point at (0, -1) or when y = -1$	M1 B1		M1 for substitution of either x = - x = 8, may be seen on diagram B1 May be implied from final answer,
			range –1 y 299	A1	[3]	be seen on diagram Must have for A1, do not allow x
		(ii)	x 0 or equivalent	B1	[1]	Allow any domain which will make f a one-one function Assume upper and lower bound when necessary.
	(b)	(i)	$g^{-1}(x) = 1n \frac{x+2}{4}$	M1		M1 for complete method to find the form inverse function, must involve In or Ig if appropriate. May still be in terms of y.
			or $\frac{1g \frac{x+2}{4}}{1g e}$	A1	[2]	A1 must be in terms of x
		(ii)	gh(x) = g(1n5x) = $4e^{1n5x} - 2$	M1 A1		M1 for correct order A1 for correct expression $4e^{1n5x} - 2$
			20x - 2 = 18, $x = 1$	A1	[3]	A1 for correct solution from correct working
			Or $h(x) = g^{-1}(18)$ 1n5x = 1n5	M1 A1		M1 for correct order A1 for correct equation
			leading to x = 1	A1		A1 for correct solution from correct working