MARK SCHEME for the October/November 2011 question paper

for the guidance of teachers

0652 PHYSICAL SCIENCE

0652/31

Paper 3 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	Page 2		Mark Scheme: Teachers' version Syllabus		Paper
			IGCSE – October/November 2011	0652	31
1	(a) 50	m/s;			[1]
	(b) acc cor spe	celera nstant eed)/o	tion/deceleration/slowing down ; /steady referring to acceleration/deceleration calculated value of acceleration/comes to rest ;	(not at con	stant [2]
	(c) (i)	use 3.0 i	of gradient, (a = (30 – 0)/(10 – 0)) ; m/s² ;		[2]
	(ii)	use = 45	of F = ma = 1500 × 3.0 (e.c.f.) ; i00 N ;		[2]
	(iii)	men force fricti	tion of frictional force/air resistance ; e from engine = accelerating force + frictional forc on ;	æ/work done ag	ainst [2]
	 (d) (car B); larger gradient/same mass (not accept shorter period of time); greater acceleration/deceleration; (both marks can be scored for a correct calculation of both accelerations and comment) 				[2] and
					[Total: 11]
2	(a) (i)	2NC all fo bala (NO	$0 + 2CO \rightarrow N2 + 2CO_2$ prmulae correct ; nced ; $+ CO \rightarrow N + CO_2 max 1)$		[2]
	(ii)	nitro carb (mai gain (1 m	gen (monoxide) is reduced because it has lost oxyg on (monoxide) is oxidised because it has gained ox rks can be gained for correct reference to /oxidation states) ax if general explanation without reference to NO a	ijen ; ygen ; electron loss nd CO is given)	[2] and
	(iii)	any (per (per (per	two: centage) of nitrogen monoxide has decreased ; centage) of nitrogen has increased ; centage) of carbon monoxide has decreased ; centage) of carbon dioxide has increased ;		[max 2]
	(iv)	carb with (if th scor	on monoxide reacts with oxygen to form carbon dio oxygen to form water ; ne carbon monoxide to carbon dioxide process is no e here)	xide/hydrogen re ot scored in (iii) if	eacts [1] t can
	(b) (i)	galv zinc zinc	anising means coating with zinc ; more reactive than steel/iron ; reacts not iron/sacrificial reaction ;		[3]

	Page 3		•	Mark Scheme: Teachers' version	Syllabus	Paper	
				IGCSE – October/November 2011	0652	31	
		(ii)	pain (botl	ted steel will rust if scratched or chipped but galvanis n required, but allow the comment re zinc not reactin	sed will not (rust) ng if included in (i); [1]))	
						[Total: 11]	
3	(a)	the cau	band Ising	vibrates ; air (molecules) to vibrate/forming a longitudinal/c	compression way	ve <u>in</u>	
		<u>the</u>	<u>air</u> ;		·	[2]	
	(b)	4 5	or 5	voves number of wayes or specified number of divis	ione :		
	(0)	4.5	in 4 c	divs (accept 5 waves in 5 divs) ;	ions ,		
		f = . (alle	450 (I ow ro	Hz) ; unding errors for answer) (use of only one wave -	- 2 max, raw and	[3] swer	
		400) Hz –	2 max)			
						[Total: 5]	
4	(-)	(:)	liasht			[4]	
4	(a)	(I)	iignt	provides <u>energy</u> ;		[1]	
		(ii)	redu	ction is gain of an electron/oxidation state goes dow	vn ;	[1]	
		(iii)	Ag⁺	$+ e^- \rightarrow Ag;$		[1]	
	(b)	/i)	add	notassium bromido solution to silver nitrate solu	ution until no fu	rthor	
	(6)	(י)	reac	tion;			
			filter was	(to obtain ppt) ; h <u>ppt</u> with distilled water ;			
			leav keer	e <u>ppt</u> to dry ; o in dark :		[max 4]	
		/ii\		$\Omega_{\rm r} = 170$ and $\Lambda_{\rm c} {\rm Br} = 188$		[
		(11)	num	ber of moles = $\frac{5}{-5}$ (accept $\frac{5}{-5}$).			
			= 5.5	170 188 ⁷ ,		[3]	
			U.	- g ,			
						[Total: TU]	
5	(a)	(i)	use	of <i>I</i> = <i>V/R</i> (= 6/48) ;			
			= 0.1	125 A (0.13 A) ;		[2]	
		(ii)	(e.c.	f.) use of <i>R</i> = <i>V/I</i> (= 4.5/0.125) ;		101	
			= 36	112 ⁻ ,		[2]	
	(b)	R=	• V/I =	= 3.0/0.125 = 24 Ω /discussion re ½ potential differential	nce leads to ½ R	; [1]	
	(⁻ /						
	(c)	(i)	use	of $1/R = 1/R_1 + 1/R_2 = 1/24 + 1/8 = 4/24$ (accept s	sum/product);		
			R = (<u>mus</u>	$24/4 = 6 \Omega$; st show R = 6 Ω)		[2]	

© University of Cambridge International Examinations 2011

	Page 4		Mark Scheme: Teachers' version	Syllabus	Paper
			IGCSE – October/November 2011	0652	31
	(ii)	(6 +	24 =) 30 Ω :		[1]
	()	(-	,,		[,]
	(iii)	(e.c. pote	f.) current = 6/30 = 0.2 A ; ential difference = 0.2 × 6 = 1.2 V ;		[2]
	(iv)	dim/ pote	not properly lit if potential differen ential difference > 3, normal if potential difference = 3	ce < 3, bright 3 ;	if [1]
					[Total: 11]
6	(a) Ca	1CO3 =	= 100 :		
•	(u) 0u	mber (of moles = $\frac{2.5}{2.5}$ or 0.025.		
	- C		100 100 100 100 100 100 100 100 100 100		[0]
	= (J.6 am	l ,		႞ၖ
	(b) (!)	oole	ium ovido io o boco bocouco it seise e sector (4)	ha avida ica a-:	
	(I) (Q)	prote	ium oxide is a base because it gains a proton/ti on ;	he oxide ion gai	ns a
		hydr (max	rochloric acid is an acid because it donates a proton x 1 if neither refers to specific reaction)	;	[2]
	(ii)	amp	hoteric ;		
		acid	ic ; ral ·		[3]
		neut	, , , , , , , , , , , , , , , , , , ,		[0]
					[Total: 8]
7	(a) (i)	the i	needle of the voltmeter moves ;		
		(do i	not allow if there is a residual current. e.g. needle fa	alls to zero)	[2]
	/::)	who	n the magnet movies the coil cuts /there is a change	in magnetic flux	
	(11)	whic	ch <u>induces</u> an e.m.f./current ;	เกลิ่มกิธแบ แน่ง	, [2]
	(b) the	e need	lle of the voltmeter moves in the opposite direction ;		[1]
	(c) wa	ive tra	ce seen on the cathode ray oscilloscope ;		
	cha	anging	g current produces changing field ;		[2]
					[Total: 7]
8	(a) (i)	nobl	e gases (do not accept inert, rare) ;		[1]
	(ii)	boili	ng point increases/density increases/mass increas	es ;	101
		with	increasing atomic number/down group;		[2]
	(iii)	unre	eactive (accept inert) ;		[1]
	(iv)	any	value between 4.5 and 9.9 kg/m 3 ;		[1]

	Page 5			Mark Scheme: Teachers' version	Syllabus	Paper
				IGCSE – October/November 2011	0652	31
	(b) (i) dia 3 s		diag 3 sh	ram showing 8 electrons in outer shell ; ells with 2 electrons in first shell and 8 in second	shell ;	[2]
		/::\	noto	acium 1, OR chlorido 1, v		[0]
		(11)	ροια	ssium, 1+ OR chionae, 1- ;;		[2]
		(iii)	lose: two	s electrons ; electrons are <u>lost</u> ;		[2]
						[Total: 11]
9	(a)	(i)	liqui	d turns to vapour/gas (<u>not</u> molecules) ;		[1]
		(ii)	boilin evap OR boilin evap OR boilin	ng: bubbles of vapour form in the liquid ; poration: molecules leave the surface of the liquid ng occurs at fixed temperature ; poration at a range of temperatures 1 ; ng is a violent process (1 max) ;	!;	[max 2]
	(b)	15	– 25 °	°C;		[1]
	(c) molecules lose energy/slow down etc. ; (not accept molecules lose therm energy)					
	clear energy loss is loss in <u>kinetic</u> energy/energy is transferred to th surroundings/ <u>hence</u> temperature falls ;					the [2]
						[Total: 6]