UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the October/November 2011 question paper for the guidance of teachers

0652 PHYSICAL SCIENCE

0652/32

Paper 3 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

		IGCSE - October/November 2011 0652	5 2
1	(a) 50	m/s;	[1]
	COI	celeration/deceleration/slowing down; nstant/steady referring to acceleration/deceleration (not at constant eed)/calculated value of acceleration/comes to rest;	[2]
	(c) (i)	use of gradient, $(a = (30 - 0)/(10 - 0))$; 3.0 m/s ² ;	[2]
	(ii)	use of F = ma = 1500 × 3.0 (e.c.f.); = 4500 N;	[2]
	(iii)	mention of frictional force/air resistance; force from engine = accelerating force + frictional force/work done against friction;	[2]
	gre (bo	ger gradient/same mass (not accept shorter period of time); eater acceleration/deceleration; oth marks can be scored for a correct calculation of both accelerations and mment)	[2]
		тј	otal: 11]
2	(a) (i)	$2NO + 2CO \rightarrow N2 + 2CO_2$ all formulae correct; balanced; $(NO + CO \rightarrow N + CO_2 \text{ max 1})$	[2]
	(ii)	nitrogen (monoxide) is reduced because it has lost oxygen; carbon (monoxide) is oxidised because it has gained oxygen; (marks can be gained for correct reference to electron loss and gain/oxidation states) (1 max if general explanation without reference to NO and CO is given)	[2]
	(iii)	any two: (percentage) of nitrogen monoxide has decreased; (percentage) of nitrogen has increased; (percentage) of carbon monoxide has decreased; (percentage) of carbon dioxide has increased;	[max 2]
	(iv)	carbon monoxide reacts with oxygen to form carbon dioxide/hydrogen reacts with oxygen to form water; (if the carbon monoxide to carbon dioxide process is not scored in (iii) it can score here)	[1]
	(b) (i)	galvanising means coating with zinc; zinc more reactive than steel/iron; zinc reacts not iron/sacrificial reaction;	[3]

Mark Scheme: Teachers' version

IGCSE - October/November 2011

Syllabus

0652

Paper

32

Page 2

Page		3	Mark Scheme: Teachers' version Syllabus			s	Paper		
			IGCSE	- October	/Novemb	er 2011	0652		32
	(ii)	-					alvanised will not eacting if included		[′
									[Total: 11
(a)	cau		ribrates ; ir (molecules	s) to vibrate	/forming	a longitud	inal/compression	ı wave	<u>in</u> [2
(b)	4.5	in 4 di	aves number		•	I number o	f divisions ;		r
	(all	450 (H ow rou) Hz – 2	nding errors	for answer)	(use of	only one w	ave – 2 max, rav	w answ	er er
									[Total: \$
(a)	(i)	light p	rovides <u>ener</u>	<u>gy</u> ;					[′
	(ii)	reduc	tion is gain o	f an electror	ı/oxidatio	n state goe	s down ;		[
1	(iii)	Ag⁺+	$e^- o Ag$;						['
(b)	(i)	reaction filter (wash leave);	tion to si	lver nitrate	solution until r	no furth	er [max 4
		•							liliax .
	(ii)	_	0 ₃ = 170 and	•					
			er of moles =	170 (acce	pt);				r.
		= 5.5	g ;						[;
									[Total: 1
(a)	(i)		f I = V/R (= 6 25 A (0.13 A)	,					[2
	(ii)	(e.c.f. = 36 g) use of $R = \frac{1}{2}$	V/I (= 4.5/0	.125);				[2
(b)	R=	: V/I = :	3.0/0.125 = 2	24 Ω/discus	sion re ½	potential d	ifference leads to	o ½ R ;	[

[2]

(c) (i) use of $1/R = 1/R_1 + 1/R_2 = 1/24 + 1/8 = 4/24$ (accept sum/product);

 $R = 24/4 = 6 \Omega$;

($\underline{\text{must}}$ show R = 6 Ω)

Page 4			Mark Scheme: Teachers' version	Paper	
			IGCSE – October/November 2011	0652	32
	(ii	i) (6 +	· 24 =) 30 Ω ;		[1]
	(iii		e.f.) current = 6/30 = 0.2 A ; ential difference = 0.2 × 6 = 1.2 V ;		[2]
	(iv		/not properly lit if potential difference ential difference > 3, normal if potential difference = 3	_	if [1]
					[Total: 11]
6	(a) C	aCO ₃ :	= 100 ;		
	n	umber	of moles = $\frac{2.5}{100}$ or 0.025;		
		0.6 dn	100		[3]
	(b) (i		cium oxide is a base because it gains a proton/th ton;	ne oxide ion gair	ns a
		hyd	rochloric acid is an acid because it donates a proton x 1 if neither refers to specific reaction)	;	[2]
	(ii	acio	ohoteric ; dic ; tral ;		[3]
		neu	uai,		
					[Total: 8]
7	(a) (i		needle of the voltmeter moves ; n goes back to zero ;		
			not allow if there is a residual current. e.g. needle fa	Ills to zero)	[2]
	(ii		en the magnet moves the coil cuts/there is a <u>change</u> ch <u>induces</u> an e.m.f./current ;	in magnetic flux	; [2]
	(b) th	ne need	dle of the voltmeter moves in the opposite direction;		[1]
	(c) w	ave tra	e trace seen on the cathode ray oscilloscope ;		
	` '		g current produces changing field ;		[2]
					[Total: 7]
8	(a) (i	i) nob	le gases (do not accept inert, rare);		[1]
	(ii	•	ing point increases/density increases/mass increase increases incr	es;	[2]
	(iii	i) unre	eactive (accept inert);		[1]
	(iv	') any	value between 4.5 and 9.9 kg/m³;		[1]

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE – October/November 2011	0652	32

(b) (i) diagram showing 8 electrons in outer shell; 3 shells with 2 electrons in first shell and 8 in second shell; [2] [2] (ii) potassium, 1+ OR chloride, 1-;; (iii) loses electrons; [2] two electrons are lost; [Total: 11] 9 (a) (i) liquid turns to vapour/gas (not molecules); [1] (ii) boiling: bubbles of vapour form in the liquid; evaporation: molecules leave the surface of the liquid; OR boiling occurs at fixed temperature; evaporation at a range of temperatures 1; [max 2] boiling is a violent process (1 max); **(b)** $15 - 25 \,^{\circ}\text{C}$; [1] (c) molecules lose energy/slow down etc.; (not accept molecules lose thermal

clear energy loss is loss in kinetic energy/energy is transferred to the

energy)

surroundings/<u>hence</u> temperature falls;

[Total: 6]

[2]