

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

PHYSICAL SCIENCE

0652/31

Paper 3 (Extended)

October/November 2011

1 hour 15 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs, tables or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

A copy of the Periodic Table is printed on page 20.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use				
1				
2				
3				
4				
5				
6				
7				
8				
9				
Total				

This document consists of 19 printed pages and 1 blank page.

1 Two cars are being tested on a straight level track.

Fig. 1.1 shows the speed-time graphs for the two cars, each of mass 1500 kg.

For Examiner's Use

[2]

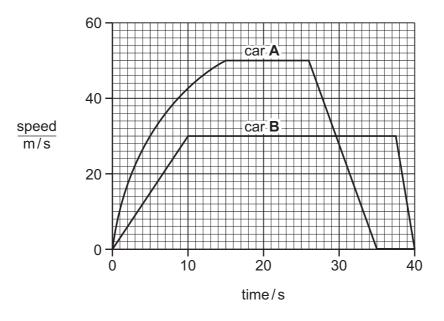


Fig. 1.1

(a) Determine the maximum velocity of car A.

	velocity =	m/s	[1]
(b)	Describe the motion of car A after 26 s.		

(c)	(i)	Use the graph to calculate the acceleration of car B during the first 10 s of the test	· For Examiner's Use
	(ii)	acceleration = [3 Calculate the resultant force on car B during this period.	2]
	(iii)	force =[3 Explain why the engine must provide a greater force than that given in your answer to (c)(ii).	2] er
			 2]
(d)		the two cars approach the end of the track they brake and come to rest.	
		[2	 2]

2 Fig. 2.1 shows a catalytic converter, which is part of a car exhaust system.

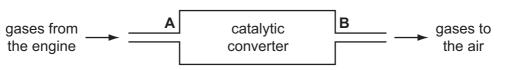


Fig. 2.1

Scientists analyse the gases at **A** and at **B**. Their results are shown in Table 2.1.

Table 2.1

gas	percentage at A	percentage at B
carbon dioxide	8.0	9.2
carbon monoxide	5.0	3.8
hydrogen	2.0	0.8
nitrogen	71.0	71.3
nitrogen monoxide	0.3	0.0
oxygen	4.0	2.8
water vapour	9.0	10.7

tor	itrogen by reaction with carbon monoxide.
(i)	Write a balanced equation for this reaction. Use the data in Table 2.1 to help you.
	[2]
(ii)	Use this reaction to explain the meaning of the terms reduced and oxidised.
	[2]
(iii)	Explain how the results in Table 2.1 support the conclusion that this reaction takes place in the catalytic converter.

(a) The scientists conclude that in the catalytic converter nitrogen monoxide is converted

© UCLES 2011 0652/31/O/N/11

For Examiner's Use

[2]

	(iv)	Use data from Table 2.1 to suggest another reaction that takes place in the catalytic converter.	For Examiner's Use
		[1]	
(b)	Par	ts of the car exhaust system are made from galvanised steel.	
	(i)	Explain how galvanising prevents steel from rusting.	
		[3]	
	(ii)	Suggest why galvanising is a better method of rust prevention than painting.	
		[4]	

3 A student experiments with a rubber band. She stretches it between two retort stands and notices that it produces a sound when she plucks it. The apparatus is shown in Fig. 3.1.

For Examiner's Use

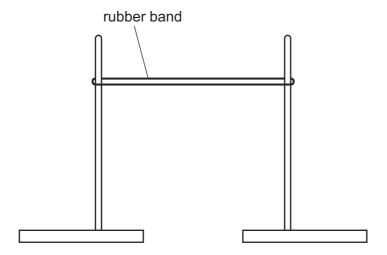


Fig. 3.1

(a)	Explain why the sound is produced.	
		[2]
		[—]

(b) The student sets up a cathode ray oscilloscope and a microphone, as shown in Fig. 3.2, to display the sound trace produced by the apparatus in Fig. 3.1.

For Examiner's Use

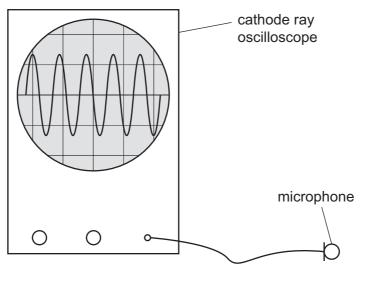
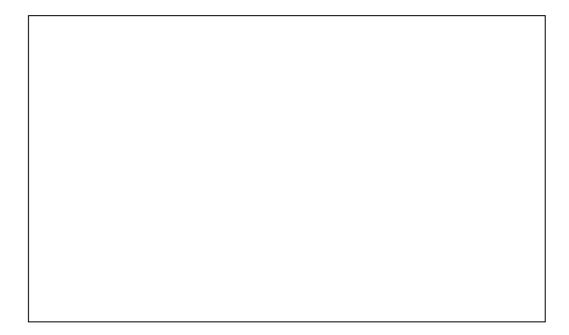



Fig. 3.2

The time base is set to 2.5 ms/division.

Calculate the frequency of the sound wave.

Show your working in the box.

frequency = ____Hz [3]

For Examiner's Use

[4]

4

Silv	er sa	alts are used	in pho	tography.									
(a)	The	action of lig	ht on s	ilver bromid	e releas	es an	electr	on.					
		A	Ag⁺Br	·	$Ag^{\scriptscriptstyle{+}}$	+	Br	+	e				
	(i)	How does li	ght en	able this rea	ection to	take p	olace?						
								••••••			•••••		[1]
	(ii)	The silver ic	on is co	onverted into	a silver	atom	۱.						
		Why is this	said to	be a reduct	tion reac	tion?							
													[1]
	(iii)	Write an ior	nic equ	ation to sho	w this re	ductio	on of a	silve	r ion.				
											•••••		[1]
(b)		er bromide omide.	can be	made fron	n the rea	action	betwe	een :	silver	nitrate	e and	potass	sium
	Α	gNO₃(aq)	+	KBr(aq)		- /	AgBr(s)	+	KNC) ₃ (aq))	
	(i)	Describe he solutions of						sam	ple d	of silve	er broi	mide ⁻	from
											•••••		
											•••••		
											•••••		

(ii)	What mass of silver bromide could be made from 5.0 g of silver nitrate?					
	[relative atomic masses, A _r : Ag, 108; Br, 80; N, 14; O, 16]					
	Show your working in the box.					
	mass of silver bromide = g [3]					
	mass of silver bromide = g [3]					

For Examiner's Use **5** Fig. 5.1 shows an electric circuit. The e.m.f. of the battery is 6.0 V. The total resistance of the variable resistor 48Ω .

For Examiner's Use

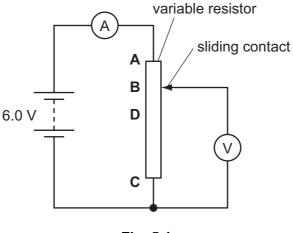


Fig. 5.1

(a)	(i)	Calculate th	e current	t measured	by the	ammeter
-----	-----	--------------	-----------	------------	--------	---------

current =	[2]

(ii) When the sliding contact is at point **B** the voltmeter reading is 4.5 V.

Calculate the value of the resistance of the section of the variable resistor ${\bf BC}.$

(b) The sliding contact is moved to point **D**. The reading on the voltmeter is now 3.0 V.

Show that the resistance of the section ${\bf CD}$ of the variable resistor is 24 Ω . You may assume that the current through the circuit remains the same.

[1]

(c)	The student realises that he could use this circuit as a variable voltage supply. He leaves the sliding contact at point ${\bf D}$ and connects a 3.0 V bulb of resistance 8Ω in place of the voltmeter.		
	(i)	Show that the resistance of the parallel combination of the bulb and the section ${\bf C}$ of the variable resistor is $6\Omega.$	CD
	(ii)	Calculate the total resistance in the circuit.	[2]
	(iii)	resistance = Calculate the potential drop across the section CD of the variable resistor.	[1]
	(iv)	p.d. = Comment on the brightness of the bulb.	[2]
			 [1]

For Examiner's Use

6		When calcium carbonate is heated strongly it decomposes to form calcium oxide and carbon dioxide.				
		$CaCO_3 \longrightarrow CaO + CO_2$				
	(a)	Calculate the volume of carbon dioxide, measured at room temperature and pressure, produced when 2.5 g of calcium carbonate is decomposed.				
		[The volume of one mole of any gas is 24 dm³ at room temperature and pressure.]				
		Show your working in the box.				
		volume of carbon dioxide = dm ³ [3]				
	(b)	Calcium oxide reacts with hydrochloric acid to form a salt.				
		CaO + 2HC l \longrightarrow CaC l_2 + H ₂ O				
		In this reaction calcium oxide is acting as a base.				
		(i) Use this reaction to define the terms acid and base in terms of proton transfer.				
		acid				
		base				
		[2]				

(ii) Calcium oxide reacts with acids but not with alkalis. It is classified as a basic oxide.Complete Table 6.1 to classify three other oxides.

For Examiner's Use

Table 6.1

name	formula	property	type of oxide
calcium oxide	CaO	reacts with acids but not alkalis	basic
aluminium oxide	Al ₂ O ₃	reacts with both acids and alkalis	
carbon dioxide	CO ₂	reacts with alkalis but not acids	
nitrogen monoxide	NO	reacts with neither acids nor alkalis	

[3]

7 Fig. 7.1 shows a magnet and a coil which is connected to a sensitive voltmeter.

For Examiner's Use

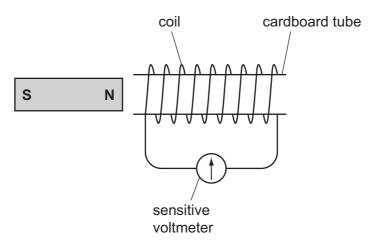


Fig. 7.1

(a)	(i)	Describe what you would observe as the magnet is moved away from the coil.	
			••••
			[2]
	(ii)	Explain this observation using the theory of electromagnetic induction.	
			[2]
(b)	The	e magnet is now moved towards the coil.	
	Des	scribe what you would observe.	
			[1]

(c) The magnet is now replaced with a similar coil connected to an alternating supply. The original coil is connected to a cathode ray oscilloscope. This is shown in Fig. 7.2.

For Examiner's Use

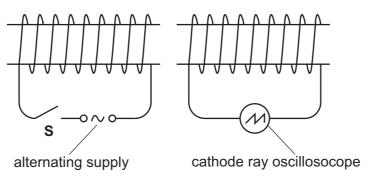


Fig. 7.2

State and explain what is observed when the switch 5 is closed.	
	••
[2	2]

8 Table 8.1 contains data about elements in Group 0 of the Periodic Table.

For Examiner's Use

Table 8.1

element	symbol	proton number	boiling point /°C	density of gas in kg/m³
helium	He	2	-269	0.17
neon	Ne	10	-246	0.84
argon	Ar	18	-186	1.67
krypton	Kr	36	-152	3.50

(a)	(i)	What name is given to the elements in Group 0?		
				[1]
((ii)	Use information from Table 8.1 to describe a trend in one physical proby this group of elements.	operty sho	own
				[2]
(iii)	Describe a chemical property common to all elements in this group.		
				[1]
(iv)	Xenon is the next member of Group 0 after krypton.		
		Predict the density of xenon.		
		density =	kg/ m³	[1]

(b)	(i)	Draw a diagram to show the electron arrangement in an atom of argon.	For Examiner's Use
		[2]	
	(ii)	A calcium ion has the same electron arrangement as an argon atom.	
		Give the name of, and the charge on, another ion apart from calcium that has the same electron arrangement as an argon atom.	
		name charge [2]	
((iii)	State how a calcium ion is formed from a calcium atom.	
		[2]	

9

A student is investigating the cooling of a cup of tea. She makes the tea using water first boiled in a kettle. As the tea cools she notices that some of it evaporates. (a) (i) State **one** similarity between evaporation and boiling. (ii) Explain the difference between evaporation and boiling. **(b)** The graph in Fig. 9.1 shows how the temperature of the tea changes with time. 100 temperature / °C 50 2 6 4 0 time/minutes Fig. 9.1 Use the graph to estimate room temperature. room temperature = [1] (c) Explain, in terms of the molecular kinetic theory, what happens to the tea as it cools.

© UCLES 2011 0652/31/O/N/11

For Examiner's Use

BLANK PAGE

DATA SHEET
The Periodic Table of the Elements

	0	He Helium	20 Neon 10 Ar Argon	84 Kr ypton 36	131 Xe Xenon 54	Radon 86		175 Lu Lutetium 71	Lr Lawrencium 103
	IIA		19 Fluorine 9 35.5 C1 Chlorine	Br Bromine	127 I lodine 53	At Astatine 85		Yb Ytterbium 70	
	IN		16 Oxygen 32 Suffur 16	79 Se Selenium 34	128 Te Tellurium	Po Polonium 84		169 Tm Thulium 69	Md Mendelevium 101
	>		14 Nitrogen 7 31 9 Phosphorus 15	75 As Arsenic	Sb Antimony 51	209 Bi Bismuth 83		167 Er Erbium 68	Fm Fermium 100
	Λ		12 Carbon 6 Silicon 14	73 Ge Germanium 32	119 Sn Tin 50	207 Pb Lead		165 Ho Holmium 67	ES Einsteinium 99
	≡		11 B 5 80ran 5 A1 Auminium 13	70 Ga Gallium 31	115 In Indium	204 T 1 Thallium		162 Dy Dysprosium 66	Cf Californium 98
				65 Zn Zinc 30	Cd Cadmium 48	201 Hg Mercury 80		159 Tb Terbium 65	Bk Berkelium
				64 Cu Copper 29	108 Ag Silver 47	197 Au Gold		Gd Gadolinium 64	Cm Curium 96
Group				59 N ickel	106 Pd Palladium 46	195 Pt Platinum 78		152 Eu Europium 63	Am Americium 95
ğ			,	59 Co Cobalt	103 Rh Rhodium 45	192 I r Iridium 77		Sm Samarium 62	Pu Plutonium 94
		T Hydrogen		56 Te Iron	Ru Ruthenium 44	190 Os Osmium 76		Pm Promethium 61	Neptunium
				Manganese	Tc Technetium 43	186 Re Rhenium 75		Neodymium 60	238 U Uranium 92
				52 Cr Chromium 24	96 Mo Molybdenum 42	184 W Tungsten 74		Pr Praseodymium 59	Pa Protactinium 91
				51 V Vanadium 23	93 Nb Niobium 41	181 Ta Tantalum 73		140 Ce Cerium 58	232 Th Thorium 90
				48 T Itanium	2 r Zirconium 40	178 Hf Hafnium 72			nic mass Ibol nic) number
				Scandium 21	89 ×	139 La Lanthanum 57 *	227 Ac Actinium 89	d series series	a = relative atomic mass X = atomic symbol b = proton (atomic) number
	=		9 Be Beryllium 4 24 Mg Magnesium 12	40 Calcium	Strontium	137 Ba Barium 56	226 Ra Radium 88	*58-71 Lanthanoid series	<i>a</i> × <i>a</i>
	_		7 Lithium 3 23 Na Sodium 11	39 K Potassium	Rb Rubidium	Cs Caesium 55	Fr Francium 87	*58-71 L 190-103	Key

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.