CANDIDATE NAME

CENTRE NUMBER

CANDIDATE NUMBER

PHYSICAL SCIENCE

0652/32
Paper 3 (Extended)
October/November 2012

Candidates answer on the Question Paper.
No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.
Write in dark blue or black pen.
You may use a soft pencil for any diagrams, graphs, tables or rough working.
Do not use staples, paper clips, highlighters, glue or correction fluid.
DO NOT WRITE IN ANY BARCODES.
Answer all questions.
A copy of the Periodic Table is printed on page 20.
At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use	
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
Total	

This document consists of $\mathbf{1 8}$ printed pages and $\mathbf{2}$ blank pages.

1 Table 1.1 shows elements in a period of the Periodic Table.
Table 1.1

group	I	II	III	IV	V	VI	VII
element	Na	Mg	Al	Si	P	S	Cl

(a) Describe how the electronic structure of successive elements differs across the period.
(b) Complete Table 1.2 to show which of these elements are metals and which are non-metals.

Table 1.2

metals	non-metals

(c) Calcium forms an ion Ca^{2+}. Chlorine form an ion Cl^{-}.
(i) Deduce the formula for the ionic compound calcium chloride.
\qquad
(ii) Describe, in terms of electrons, how calcium and chlorine atoms form calcium chloride.
\qquad
\qquad
\qquad
\qquad
\qquad
(d) Sulfur dioxide is a covalent molecule.

In the box below, draw a diagram to show the arrangement of all the outer electrons of the atoms in a molecule of sulfur dioxide.
\square

2 Fig. 2.1a shows a high jumper about to leave the ground. Fig. 2.1b shows the same high jumper at the top of his flight.

Fig. 2.1a

Fig. 2.1b

The high jumper has a mass of 75 kg . Point \mathbf{C} shows the centre of mass of the high jumper.
(a) Explain what is meant by the term centre of mass.
\qquad
\qquad
\qquad
(b) (i) Calculate the increase in the gravitational potential energy of the high jumper from when he leaves the ground to when he reaches the top of his flight.
$[\mathrm{g}=10 \mathrm{~N} / \mathrm{kg}]$
increase in gravitational potential energy = \qquad
(ii) State the minimum kinetic energy with which the high jumper must leave the ground.
(c) On a second jump the same high jumper leaves the ground with kinetic energy of 750 J . Calculate the speed at which he leaves the ground.
speed =
(d) The gain in potential energy of the high jumper is less than the work he does in his take off.

Suggest a reason for this.
\qquad
\qquad

3 Magnesium sulfate is a salt that is soluble in water.
It can be made in the laboratory from solid magnesium oxide, MgO , and dilute sulfuric acid, $\mathrm{H}_{2} \mathrm{SO}_{4}$.
(a) Describe how you would make pure dry crystals of magnesium sulfate from solid magnesium oxide and dilute sulfuric acid.
\qquad
\qquad
\qquad
\qquad
(b) Write a balanced equation for the reaction between magnesium oxide and sulfuric acid. Include state symbols in your equation.
\qquad
(c) Magnesium sulfate can also be made from magnesium hydroxide and sulfuric acid.

$$
\mathrm{Mg}(\mathrm{OH})_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{MgSO}_{4}+2 \mathrm{H}_{2} \mathrm{O}
$$

What is the maximum mass of magnesium sulfate that could be made from 5.0 g magnesium hydroxide?
[Relative atomic masses: A_{r} : $\left.\mathrm{H}, 1 ; \mathrm{Mg}, 24 ; \mathrm{O}, 16 ; \mathrm{S}, 32\right]$
Show your working in the box.
\square
\qquad g
\qquad

4 Fig. 4.1 shows a wind powered generator which has an efficiency of 30%.

Fig. 4.1
(a) The generator depends on a form of energy possessed by the wind.

Name this form of energy and briefly explain your answer.
\qquad
\qquad
\qquad
(b) Explain what is meant by the phrase the generator has an efficiency of 30%.
\qquad
\qquad
(c) The generator has a maximum output of 4500 W at 230 V .

Calculate the maximum current that can be taken from the generator.
current =
\qquad

5 A student uses the apparatus shown in Fig. 5.1 to investigate the reaction between magnesium and hydrochloric acid.

Fig. 5.1

She measures, at room temperature and pressure, the hydrogen given off when magnesium ribbon reacts with an excess of dilute hydrochloric acid.

Results of her investigation are shown in Fig. 5.2.

Fig. 5.2
(a) (i) State the time at which the reaction stopped.
\qquad
(ii) Explain why the reaction stopped.
\qquad
(b) The experiment is repeated using the same mass of magnesium ribbon and a more concentrated solution of hydrochloric acid.

On Fig. 5.2, sketch the line you would expect for this second experiment.
(c) Calculate the mass of magnesium used in the reaction.
[Relative atomic masses: A_{r} : $\mathrm{H}, 1 ; \mathrm{Cl}, 35.5 ; \mathrm{Mg}, 24$.]
The volume of one mole of any gas is $24 \mathrm{dm}^{3}$ at room temperature and pressure.
Show your working in the box.
\square
mass of magnesium $=$ \qquad g

6 (a) Fig. 6.1 shows a parallel beam of light incident on a converging lens.

Fig. 6.1
(i) On Fig. 6.1, draw rays to show the path of the light after it passes through the lens.
(ii) On Fig. 6.1, draw an arrow to show the focal length of the lens.
(b) (i) Jan uses a converging lens of focal length 10.5 cm to study a small insect. Point \mathbf{P} on the insect is 5.0 cm from the centre of the lens.

On Fig. 6.2, draw two rays from point \mathbf{P} to show how and where the image of the insect is formed.

Fig. 6.2
(ii) Give a full description of the image.
\qquad

7 Zinc and copper are two commonly used metals.
(a) Zinc is mixed with copper to make the alloy brass.

Brass is stronger than either pure metal. Explain why.
\qquad
\qquad
\qquad
\qquad
(b) Zinc is used to make galvanised steel.
(i) What is galvanised steel?
\qquad
(ii) Explain how galvanised steel is more useful than steel that has not been galvanised.
\qquad
(iii) Explain how zinc makes this improvement to steel.
\qquad
\qquad
\qquad
\qquad
(c) Copper is used to make saucepans.

State which property of copper makes it a good choice for this application.

8 Daniel is investigating the resistance of a length of nichrome wire. He builds the circuit shown in Fig. 8.1.

Fig. 8.1
(a) He takes a series of readings of the current with different potential differences across the nichrome wire. He uses his results to draw the graph shown in Fig. 8.2.

Fig. 8.2
(i) Describe how he varies the potential difference across the nichrome wire.
\qquad
\qquad
(ii) Use the graph to determine the resistance of the nichrome wire.

Show your working.
resistance =
(b) Daniel then uses a second piece of nichrome wire half the diameter of the original wire. Calculate the resistance of this piece of wire.
resistance =

9 Poly(ethene) is made from ethene, $\mathrm{C}_{2} \mathrm{H}_{4}$.
(a) Ethene is an unsaturated compound.

Explain the meaning of the term unsaturated.
\qquad
(b) Describe how the ethene for this process is made.
\qquad
\qquad
(c) Complete this equation to show the formation of poly(ethene) from ethene.

Please turn over for Question 10.

10 Fig. 10.1 shows a transformer.

Fig. 10.1
The input is connected to a cathode ray oscilloscope (c.r.o.) and the output is connected to another c.r.o.
(a) (i) The transformer works by electromagnetic induction.

Explain what is meant by electromagnetic induction.
\qquad
\qquad
\qquad
(ii) Explain why the input to the transformer must be an alternating voltage.
\qquad
\qquad
\qquad
(iii) \mathbf{P} is the transformer core.

Name the material that \mathbf{P} is made from.
(iv) Outline the role of \mathbf{P} in the operation of the transformer. Your answer should include the properties of the material which make it suitable.
\qquad
\qquad
\qquad
(b) (i) This transformer allows an appliance designed to be used on a 115 V supply to be used on a 230 V supply.

Calculate the turns ratio of the primary coil to the secondary coil ($\left.N_{\text {primary }}: N_{\text {secondary }}\right)$.

$$
\left(N_{\text {primary }}: N_{\text {secondary }}\right)=
$$

(ii) Fig. 10.2 shows the screen of the c.r.o. that is connected to the input.

Fig. 10.2

On Fig. 10.2, draw the trace that would be obtained on the c.r.o. connected to the output.

You should assume that the time base and y-gain settings of the two cathode ray oscilloscopes are the same.

BLANK PAGE

BLANK PAGE

The volume of one mole of any gas is $24 \mathrm{dm}^{3}$ at room temperature and pressure (r.t.p.).

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of

