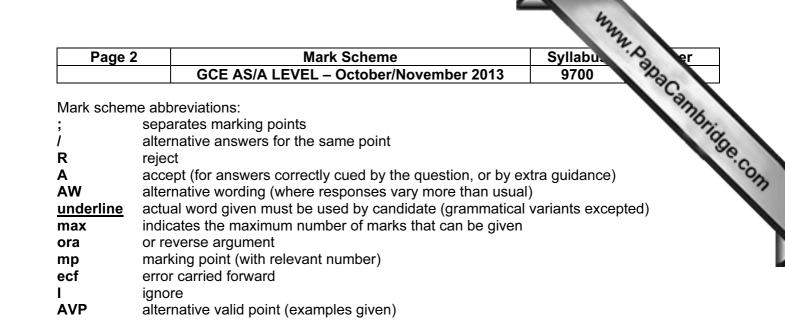
www.papacambridge.com MARK SCHEME for the October/November 2013 series

9700 BIOLOGY

9700/22


Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE. GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Pa	ge 3		Mark Scheme	Syllabu.	er
			GCE AS/A LEVEL – October/November 2013	9700 2	2
(a)	two		; s for the correct answer 34 / 1.37 / 1.43 / 1.46 / 1.5	Syllabu 9700 Pro	ambridge
	tole	rance	e on measurement of 49 mm = $\pm 2 mm$ (i.e. 47 to 51 mm)	
	cori	rect us	not given or incorrect allow one mark for correct measuse of formula (measurement divided by the magnification the rearranged formula)	urement and	[2]
(b)	1		e / wide, lumen (relative to thickness of wall) ; tery narrow lumen		
	2	A fla A art	ular shape ; AW ttened / oval / not round(ed) (shape) ; tery, round(ed) / regular (shape) to (vein) not spherical / artery spherical		
	3	or	/ AW, tunica media / middle layer / (smooth) muscle and portionately) less, elastic / (smooth) muscle, in, tunica m	-	
	4	fibrou	tively) thin, tunica externa / tunica adventicia / outer layo us layer ; nall(er)	er / fibrous coat /	
	5		a intima / tunica interna / inner layer / endothelium, smo vavy / AW ;	ooth / not 'crinkly' /	
	alt	thin (9 3 <u>not</u> awarded, award 1 mark <u>only</u> for (smooth) muscle layer / less (smooth) muscle elastic layer / less elastic tissue		[max 3]
(c)	(i)		t distance for <u>diffusion</u> (of molecules / ions / named) ; duced distance / thin / short pathway / AW		
		A fas	eased rate / AW, of <u>diffusion</u> (of molecules / ions / name st(er) / (more) efficient sy / better	d);	[max 1]
	(ii)		small size allows contact with (many body) cells / AW ; A <i>idea of</i> extending into small spaces		
			red blood cell, close to, (body) cells / tissue for (efficient A in contact with / close to, capillary wall / endothelium,		
		f	red blood cells / blood flow, slow(s) down / <i>idea of</i> more for (efficient) diffusion / cells to obtain sufficient nutrient treat ref. to lower pressure as neutral		
			(plasma / blood, containing), glucose / nutrients / nameo close to / AW, body cells ;	d nutrient / oxygen,	[max 1]

Page 4	1	Mark Scheme	Syllabu A er
		GCE AS/A LEVEL – October/November 2013	9700
(d) (i)	(prc	oduce genetically identical daughter epithelial cells for)	Cannb
	1	(for tissue) repair ; R cell repair	Syllabu 9700 Papacambra 4 AW, cells ;
	2	<i>idea of</i> replacing, dead / destroyed / damaged / worn-out / A replacement of cells, unqualified <i>if mp 1 gained</i>	AW, cells ;
	3	ref. protection of, underlying tissue / muscle and elastic lag tunica media / AW ;	yer /
	4	meiosis produces, haploid cells / cells with n chromosome chromosomes ; A cells with half the number of chromosomes	s / cells with one set of
	5	meiosis for gamete formation ; A sex cells	
		R meiosis in gametes	[max 2
(ii)	igno	pre ref. to 23/46 chromosomes	
	proc	osis to), maintain genetic stability / produce genetically ide duce clones ora	ntical cells /
	<i>or</i> mei	osis produces genetically different cells ;	
	(mit	osis), ensures cells retain function / cells function as tissue osis) maintains chromosome number ; naintains, diploid number / 2n	e / AW ;
	mei A ce	osis produces, haploid cells / cells with n chromosomes / c ells with half the number of chromosomes osis for gamete formation ;	ells with one
	A se	ex cells neiosis in gametes	[max 2
(e) ign			
		nuclear, membrane / envelope, shown is if chromosomes with two chromatids drawn	
1	<u>four</u>	separate, chromatids / daughter chromosomes, shown in	each half ;
2		centromeres leading /' shapes if centromere not obvious (point of V towards pole	e)
	-	centromeres attached to spindle fibres ;	[2

[Total: 13]

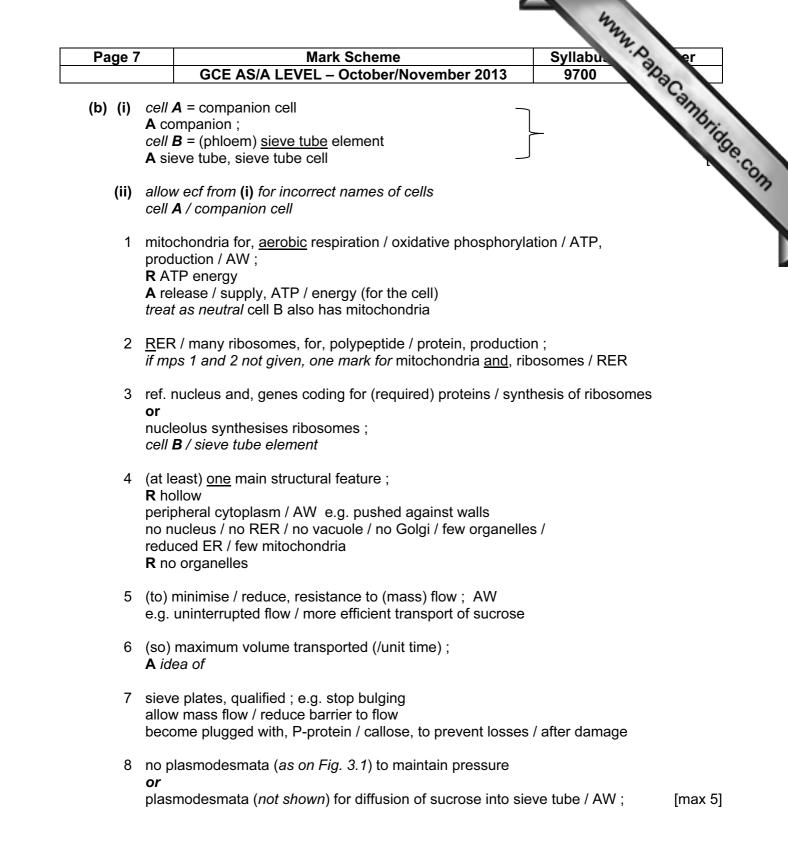
e 5 Mark Scl		Syllabu.
GCE AS/A LEVEL – Octo	per/November 2013	9700
Keratin and chitin have structura functions cellulose ; collagen ; allow <u>only one</u> incorrect molecule to be listed for max 1	Keratin is a fit collagen ; no marks if other r	
The monomers of chitin have β-1,4 linkages between them cellulose ; no marks if other molecules giver	<i>Keratin and chitin</i> collagen / haemog mRNA ; 2 nd mark allow <u>only one</u> ince	Jlobin ; 1 st mark

[max 5]

[1]

(b) (i) 47.5 °C;

- (ii) accept activity for relative activity throughout accept manipulated data quotes and penalise once for, incorrect / no, units
 - Fig. 2.2 (relative activity of enzyme at different temperatures)
 - as temperature increases, activity increases up to, optimum / 47.5 °C (allow ecf from (i), then decreases;
 A peaks (for increase then decrease)
 - 2 activity increases from 30 °C to 47.5 °C, then decreases to 70 °C ; also mp 1 or

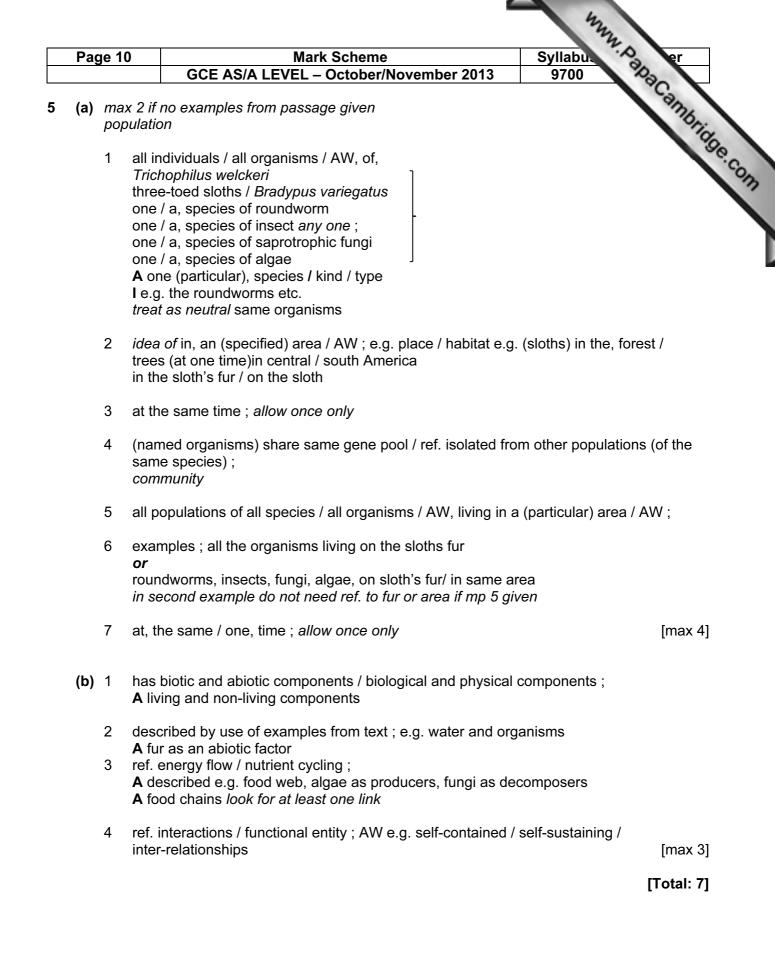

increase <u>or</u> decrease, described with comparative data (*activity and temperature compared with another activity and temperature*)

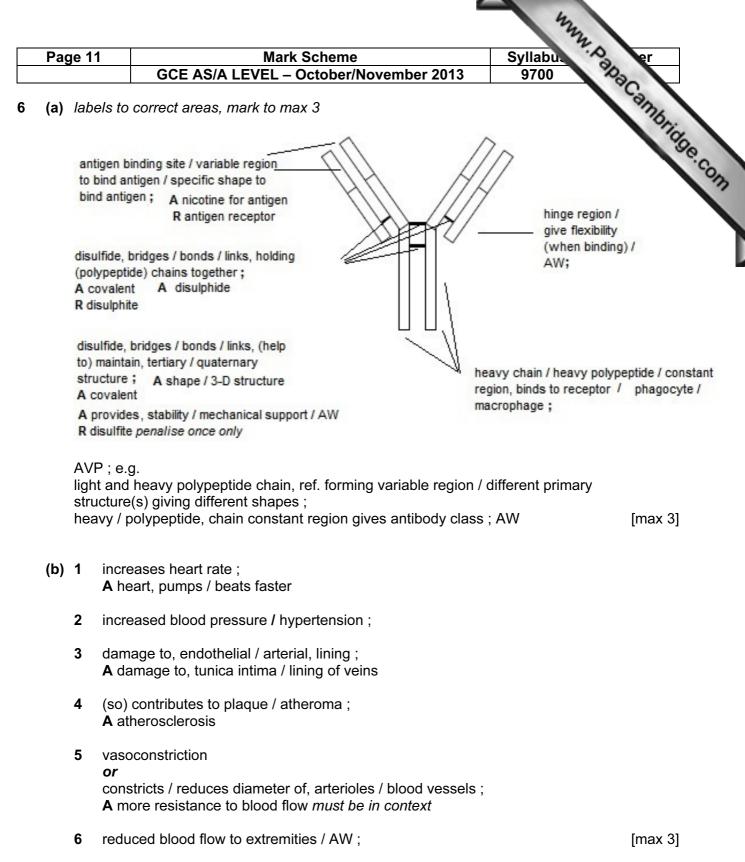
- 3 at higher temperatures (compared to most others) enzyme still active ;
- 4 high optimum temperature (compared to most other enzymes);

Fig. 2.3 (stability over time for enzyme maintained at different temperatures) 5 enzyme becomes less stable over time ;

- A activity decreases over time
 A description if at least two temperatures described
- 6 data quote to support ; activity at two times for any one temperature if time 0 or 'start', then assume 100% relative activity if 100%, assume time 0

			Mark Calerina Cullati	20
Paç	ge 6		Mark SchemeSyllabutGCE AS/A LEVEL – October/November 20139700	20 Pr
		7	(over the time period) the lower the temperature, the more stable the enzyme ; ora A enzyme has higher activity at the lower temperatures A stated temperature <u>s</u> (at least two) to illustrate the point e.g. 28 °C higher activity than 40 °C throughout A 28 °C, high <u>est</u> activity / enzyme most stable (throughout)	AN, Papacambridg
		8	data quote to support ; temperatures and (relative) activity (with one	
		disc	cussion points	
		9	AVP ; ;	
		10	e.g. Fig 2.2 reason for increasing activity up to optimum / decrease after optimum e.g. ref. collisions, kinetic energy increase e.g. denaturation at 60–7 R denaturation at 50 °C (but A denaturation begins) suggested reason for higher optimum temperature e.g. more bonds	
			<i>Fig. 2.3</i> (suggests that) more molecules become, denatured / inactive, as tim greater stability / higher activity, at 40 °C than 37 °C between 40–50 k	
			<i>Fig. 2.2 and 2.3</i> optimum temperature for activity not most stable temperature steep decrease in stability at 60 °C in a short time as (nearly complet occurs <i>allow once only</i> commercial application e.g. if hydrolysis occurs over a longer time performed better to use a lower temperature than optimum	
				[Total: 11]
(a)	1	A m	e (size / volume / organism) ; nulticellular / many cells arger	
	2		small(er) / low, surface area : volume ; size increases, SA:V decreases = 2 marks	
	3	diffu	usion (alone), not enough / too slow (to supply needs) ;	
	4	dista	lanation ; e.g. surface too far from, centre / AW, of plant ances too far to supply required, nutrients / substances uires, supplies in bulk / mass flow	
	5	è.g.	require) xylem <u>and</u> phloem, qualified ; transport in different directions em transports water (and mineral ions) and phloem transports, assimi	,


|--|


Mark Scheme GCE AS/A LEVEL – October/November 2013

je 8	Mark Scheme		Syllabu. A er
	GCE AS/A LEVEL – October/Nov	vember 2013	9700 23
			an.
tı	ransport system in mammals	transport syste	m in plants
Δ	arteries, veins, capillaries A delivery to cells by arteries and apillaries	xylem and phlc A vascular bun	
2 h	neart / pump		pull in xylem /
3 d	louble circulation	no double circu flow / phloem s AW ; R single o	
4 c	losed circulation	not closed circu plasmodesmat A open	•
0	one (circulatory) system / water and organic molecules transported in same ressels / AW		systems / water transport in els to organic molecules ;
6 (a	all) living cells	living and dead A dead cells in	
	ransports, (respiratory) gases / oxygen carbon dioxide	respiratory gas	es not transported ;
	ransports glucose accept within correct list	(phloem) trans accept within c	
9 fa	aster rate of flow	slower rate of f	low ;
s v	ate of flow controlled by, nervous system control of heart / action of heart / asoconstriction and vasodilation / AW accept ref. endocrine system	system / (in xyl	s / (in xylem) controlled by
11 c	components include blood cells	cells not transp	oorted / AW ;
12 h 13 c	AVP ;;; nomeostasis involved / concentration of dissolved substances controlled	no homeostasi	s / AW ;
e o	ef. to defence e.g. immune system e.g. blood clotting organ-based valves present	no equivalent t callose formation tissue-based ; no valves ;	o immune system on ;

[max 4] [Total: 13]

er er	Syllabu	Mark Scheme	je 9	Pag
Pac	9700	GCE AS/A LEVEL – October/November 2013		
Phile.	f DNA	penalise once if the term genetic material is used instead of	(i) per	(a)
PapaCambrid		 1 no nuclear envelope / no (true) nucleus ; A no nuclear membrane A no nucleus envelope A DNA free in cytoplasm ora A DNA as nucleoid 	1	
		2 DNA, loop / circular ; A DNA not linear	2	
ns ;	nistones / proteins	3 DNA, not in chromosome <u>s</u> / DNA not associated with, A naked DNA	3	
		4 no nucleolus ;	4	
		5 (presence of) plasmids ;	5	
		6 (only) have, 70S / small / 18–20 nm, ribosomes ;	6	
		7 presence of, capsule / slime layer ;	7	
[max 3]		8 ref. small (cell) size / less than $5\mu m$ / (only) $1\mu m$; A ora for eukaryotes	8	
		plant cell cellulose ; treat as neutral ref. to microfibrils / fibres		(
[2]		<i>bacterial cell</i> murein / peptidoglycan ; A peptoglycan / polysaccharide and amino acid	mu	
	^r same size	cell contents shrink / cytoplasm shrinks ; AW R cell shrinks <i>unless clear that the cell wall remains, intact</i>		(b)
vall ;	AW, from cell wall	cell (surface) membrane / plasma membrane, peels away A plasmolysis occurs / cell becomes flaccid		
[max 3]		(movement of) water out by osmosis ; down water potential gradient / from high to low water potential water potential /from less negative to more negative water $\mathbf{A} \ \psi$ for water potential	4 dov wa	
	des (of DNA);	(mutation involves) change in sequence of, bases / nucleo A (mutation leads to) altered, mRNA / codons A change leads to new alleles (genes code for, polypeptides / proteins, so)	A (A c	(c)
	d ;	different, protein structures / proteins, possible / synthesise A different, primary / tertiary / 3-D, structure		
[max 2]		(so) range of / different, functions possible / AW ;	3 (so	
[Total: 10]				

[Total: 6]