UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Ordinary Level

MARK SCHEME for the May/June 2010 question paper for the guidance of teachers

5070 CHEMISTRY

5070/22

Paper 2 (Theory), maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	Page 2		Mark S	Scheme: Teachers' ver	sion	Syllabus	Paper
			GCE C	LEVEL – May / June 2	2010	5070	22
A 1	(a)	CF₃C1					[1]
	(b)	CH ₄ / CC	D_2				[1]
	(c)	CaCO ₃					[1]
	(d)	BaSO ₄ /	CaCO ₃				[1]
	(e)	K ₂ Cr ₂ O ₇					[1]
	(f)	C ₂ H ₄					[1]
							[Total: 6]
A2	(a)	1 / one					[1]
	(b)	number on	atomic) number of protons of electrons of neutrons	= 87 = 87 = 87 = 136			
			ct = 2 marks orrect = 1 mark				[2]
	(c)	 election soft low interest (relation malling duction shing IGNORE IGNORE 	mal conductor / trical conductor / or cuts easily / melting point or atively) low densi eable / tile / y or silvery ALLO E: floats on water E: chemical prope	low boiling point / ty or lightweight IGNOR DW: grey IGNORE: white / sonorous. erties	_		[2]
	(d)	2Fr + 2H ALLOW:	E: comparisons e I ₂ O → 2FrOH + multiples Fr + H ₂ O → Fr				[1]
		IGNORE	: state symbols				
							[Total: 6]

Page 3		ae 3	Mark Scheme: Teachers' version	Syllabus	Paper	
		.300	GCE O LEVEL – May / June 2010	5070	22	
A3 (a)		1 ma	s) + 2HC $l(aq) \rightarrow ZnCl_2(aq) + H_2(g)$ ark for correctly balanced equation; ark for correct state symbols (dependent on all formula	lae being correct)	[2]	
	(b)		gas escapes / hydrogen escapes / gas given off / hydrogen released / gas produced / gas evolved / hy NOT: hydrogen produced without qualification. part (a)	drogen is a gas ;	[1]	
		. ,	downwards curve starting at the same point as the left (at least at first);	the original curve bu	t displayed to [1]	
			Line ends at the same mass as the original; NOT: curve dipping markedly below the hor upwards to meet it	rizontal section and	[1] then going	
(c)		a give ALL ALL there IGN	d) particles in dilute acid are less crowded / the ven volume / the particles (of acid) are further apart; .OW: concentration of HCl particles is lower .OW: molecules / ions in place of particles .OW: reverse argument e.g. particles in concente are more particles (of acid) in a given volume etc .ORE: there are fewer molecules unqualified / the es in a given volume.	trated acid are mo	[1] re crowded /	
		colli: ALL char	er collisions (in dilute acid) / less chance of collis sions lower (in dilute acid) ; .OW: reverse argument e.g. more collisions nce of collisions (in concentrated acid) ; .ORE: effective (collisions)		[1]	
(d)			e particles exposed / large(r) surface area ; OW: atoms / ions in place of particles		[1]	
		freq	e collisions / greater chance of collisions / part uency of collisions ; ORE: effective (collisions)	icles collide more o	ften / greater [1]	

(e) white precipitate / ppt or white solid;

[1]

IGNORE: bubbles / colourless ppt / incorrectly named ppt

precipitate redissolves (in excess) / precipitate goes to (colourless) solution (in excess); [1]

ALLOW: this mark if wrong colour precipitate

NOTE: second mark dependent on ppt or solid stated for first mark

[Total: 11]

	Page 4		age 4 Mark Scheme: Teachers' version Sylla		
			GCE O LEVEL – May / June 2010	5070	Paper 22
A4	(a)	ALLOW: REJECT	has electron(s) that can move / are mobile / are delocal graphite has free electron(s) / graphite has a sea of electron implications of layers moving / ions have free electron has all its electrons involved in bonding / has electrons / has electrons involved in bonding / has electrons / has el	ectrons ns	[1] annot move /
		are not n ALLOW:	nobile / no delocalised electrons ; diamond has no free electron(s) : mention of ions	()	[1]
	(b)	IGNORE forces ALLOW:	lium chloride has ions fixed in position / ions cannot mode: electrons cannot move / ions can't carry electricity ions are not free		[1] intermolecular
		aqueous ALLOW: REJECT	: no ions to move sodium chloride has ions that can move / are mobile; ions are free : reference to moving electrons as well as ions :: ions carry electric charge / ions dislocated / ions delo	calised /	[1]
	(c)	ALLOW:	ead at cathode and bromine at anode ; Pb at cathode / Br ₂ at anode : lead(II) / Pb ²⁺ / Br ⁻ / bromide		[1]
			oxygen / O ₂ ; : O ²⁻		[1]
			hydrogen / H_2 ; : H^{\dagger}		[1]
	(d)		cial use e.g. extraction of aluminium or any extracted by electrolysis / purification of copper / (electroading metals / hair removal / production of sodium h	ctro)plating;	ent which is [1]

ALLOW: coating metals / hair removal / production of sodium hydroxide NOT: electrolysis of named substance unqualified / reference to electrochemical cells

correct electrolyte / correct formula of electrolyte:

This mark is dependent on the correct use BUT allow if it is feasible e.g. zinc sulphate (given incorrect use of zinc in the first part).

e.g. molten aluminium oxide dissolved in cryolite / (aqueous) copper sulfate or copper sulfate (solution) / for hair removal accept sweat or sodium chloride (solution). [1]

correct ionic equation: This mark is dependent on the electrolyte used; e.g. A l^{3^+} + 3e $^-$ ightarrow Al / Cu $^{2^+}$ + 2e $^-$ ightarrow Cu / 2H $^+$ + 2e $^-$ ightarrow H $_2$ [1]

[Total: 10]

	Pa	ge 5	}	Mark Scheme: Teachers' version	Syllabus	Paper
				GCE O LEVEL – May / June 2010	5070	22
A 5	(a)	cra	cking	/ thermal decomposition ;		[1]
	(b)	(i)		$_4$ + H ₂ O \rightarrow C ₂ H ₅ OH OW: C ₂ H ₆ O for the product		[1]
		(ii)	ALL	oanol; OW: propan-1-ol / propan-2-ol ORE: formulae		[1]
	(c)	(i)	REJ IGN	two from: temperature between 25°C to 40°C / ECT: high temperature IGNORE: room temperature yeast / zymase / enzymes / ORE: catalyst alone absence of oxygen / anaerobic (conditions) / not expos water REJECT: moisture / damp pH neutral / near neutral / pH 7 ORE: pressure / presence of glucose	sed to air	[2]
		(ii)	rene cons pres equi ALL phot phot IGN qual	one of: ewable raw materials used or renewable fuel made serves valuable resources / lower energy costs / lower sure required / consumes less energy / atmospheric personant not required / simple apparatus required; OW: carbon neutral / carbon dioxide made (in this cosynthesis (to make more glucose) NOT: carbo cosynthesis alone ORE: not as complicated / references to pollution ification T: costs alone / faster / uses glucose without qualification	r temperature re pressure require is process) can n dioxide can / consumes e	equired / lower d / specialised be used for be used for
	(d)	(fractional) distillation / fractionation; ALLOW: description of distillation e.g. evaporating then condensing the alcohol (first) IGNORE: using an anhydrous salt / named anhydrous salt				[1] (first)
	(e)	lime	e wate	er goes milky / cloudy / chalky / misty / white precipitate	е	[1]

[Total: 8]

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper	
	GCE O LEVEL – May / June 2010	5070	22	

A6 (a) (i) addition; [1]

ALLOW: additional IGNORE: specific names

(ii) minimum required is $C_2H_5CH=CH_2$ [1]

(iii) no (carbon-carbon) double bonds / <u>only</u> has (carbon-carbon) single bonds [1] ALLOW: no hydrogen can be added / no addition reactions / carbons fully occupied by (hydrogen atoms)

NOT: occupied by wrong atoms e.g. Cl atoms

NOT: has carbon-carbon single bonds

(b) non-biodegradeable / can't be broken down by bacteria / insoluble in water / <u>only</u> soluble in organic solvents [1]

ALLOW: doesn't react with water / unreactive IGNORE: it is a hydrocarbon / it is strongly bonded

[Total: 4]

	Pa	age 7 Mark Scheme: Teachers' version		Syllabus	Paper	
			GCE O LEVEL – May / June 2010	5070	22	
37	(a)	nitro harn ALL effect NOT	a-polluting gases formed / harmless gases formed / ogen and water are non-polluting / the products mless; OW: nitrogen and water don't affect ozone / don't ect / don't contribute to acid rain T: nitrogen and water less harmful / nitrogen and water ironmentally friendly products	are non-polluting/the	non-polluting/the product <u>s</u> ar ['ribute (as much) to greenhous	
	(b)	 bond breaking endothermic / requires energy / absorbs energy AND bond making exothermic / releases energy / gives out energy; 				
			re energy is released than absorbed (or similar wording JECT: implication that energy needed in bond formation	• ,	[1	
			on er than energy take	n in to breal		
	(c)	(i)	moles $N_2H_4 = 1\ 000\ 000\ /\ 32 = 31\ 250$;		[1	
			moles O_2 = moles N_2H_4 or implication of this in works ALLOW: ecf from wrong moles of N_2H_4	ng;	[1	
			Volume of O_2 (31 250 × 24) = 750 000 dm ³ / 7.5 × 10 ALLOW: ecf from second mark.	O ⁵ dm³ ;	[1	
			Alternative for 1 st two stages: 32 g $N_2H_4 \rightarrow 32g$ O_2 (1 mark) moles O_2 = 1 000 000 / 32 = 31 250 (allow ecf) (1 mark)	ark)		
			it / liquid oxygen takes up less space / room; ALLOW: able to store more in liquid form / gaseous capacity. IGNORE: less easily spread out/no gas can escape prevent reaction with other substances			

(d) (i) $N_2H_5Cl / N_2H_6Cl_2$

[1]

ALLOW: any order of atoms

ALLOW: correct displayed formulae or mixtures of displayed and molecular

REJECT: N₂H₅C*l* in equation if more than one product given

Structure completely correct = 2 marks

NOTE: (i) only outer shells need be shown

(ii) no distinction need be made between dots and crosses

IF: inner shells incorrect = 1 mark maximum.

IF: structure with a triple bond and no lone pairs = 1 mark

NOT: structures with separate nitrogen atoms / double bonds (= 0)

Page 8	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE O LEVEL – May / June 2010	5070	22

B8 (a) (i) butanoic acid / methylpropanoic acid;

[1]

(ii) minimum is CH₃CH₂COOH / (CH₃)₂CHCOOH ALLOW: <u>correct</u> displayed formulae or mixture of structural and displayed [1]

(iii) C_2H_4O [1]

(b) molar ratio correct C = 4.35, H = 13.0, O = 2.18;

[1]

[1]

ALLOW: correct error carried forward as long as there is not too much rounding up or down from the first stage

ALLOW: C₂H₅OH

 C_2H_6O

(c) (i) ethyl ethanoate;

[1]

(ii) solvent / flavouring / perfume / aroma /

ALLOW: to make the taste in sweets / deodorants

IGNORE: food additive

(d) (i)

correct structure of ester linkage showing ALL atoms and bonds (including bonds to the boxes) = 1 mark

at least 2 units shown with continuation bonds = 1 mark

ALLOW: ester linkages reversed

ALLOW: boxes or part formulae between ester linkages the same

NOT: more than three type of 'boxes'

ALLOW:

ALLOW: single unit shown bracketed and continuation bonds

2nd mark dependent on ester linkage being shown correctly, or as -COO- or -CO2- etc

(ii) fat / lipid / (tri)glyceride;

[1]

Page 9	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE O LEVEL - May / June 2010	5070	22

B9 (a) reaction in which there is electron transfer / one reactant loses electrons <u>and</u> the other gains electrons / both oxidation <u>and</u> reduction occur; [1]

ALLOW: a reaction involving changes in oxidation state

IGNORE: gaining and losing oxygen / gaining and losing hydrogen

(b) (i) less iodine present / lower concentration of iodine;

[1]

NOT: less reactants present / diluted in colour because more colourless HI present

(position of) equilibrium moves to the right / increased yield / reaction moves to the right; [1]

ALLOW: more hydrogen and iodine react to form hydrogen iodide

ALLOW: more hydrogen iodide formed / more product formed / rate of forward reaction increases (to achieve new equilibrium)

The reaction is endothermic / the reaction absorbs heat (or energy) / ΔH is positive; [1]

(c) moles of hydrogen = 45.3 / 2 = 22.65

[1]

answer only scores mark

ALLOW: 22.7

moles of HI = 45.3;

[1]

ALLOW: ecf / indication that moles HI 2× moles of hydrogen i.e. use of 1:2 ratio

mass = $(45.3 \times 128) = 5798 \text{ g} / 5798.4 \text{ g}$;

[1]

ALLOW: ecf moles HI / 5800 g

Alternative method:

2 g hydrogen \rightarrow 2 × 128 = 256 g HI (1 mark)

so 1 g hydrogen \rightarrow 128 g HI (1 mark)

 $45.3 \text{ g hydrogen} \rightarrow 45.3 \times 256 / 2 = 5798(.4) \text{ g (1 mark)}$

(d) (i) $Pb^{2+}(aq) + 2I^{-}(aq) \rightarrow PbI_{2}(s)$

[2]

balanced equation = 1 mark

correct state symbols = 1 mark (dependent on correct formulae above)

ALLOW: full ionic equation

NOT: X⁻ in place I⁻ and PbX₂ in place of PbI₂

(ii) it or X is a reducing agent / HI is a reducing agent / it or X can be oxidised / HI can be oxidised; [1]

. age	COS O L SVISI Mary / Lung 2040	i apci		
		GCE O LEVEL – May / June 2010	5070	22
0(a) (i		KOH + HC $l \rightarrow \text{KC}l + \text{H}_2\text{O}$ ALLOW: $\text{K}_2\text{CO}_3 + 2\text{HC}l \rightarrow 2\text{KC}l + \text{H}_2\text{O} + \text{CO}_2$ ALLOW: KHCO $_3 + \text{HC}l \rightarrow \text{KC}l + \text{H}_2\text{O} + \text{CO}_2$ IGNORE: state symbols NOT: word equation		[1]
(ii)	· (titrate (acid against alkali) / titration / description of titother until neutralised / add one solution to another colour; IGNORE: lack of repeating the titration without indicate	until (acid-base) ind	
		Evaporate the solution (from the titration flask to dryne	ss);	[1]
	t	ALLOW: evaporate / heat / boil ALLOW: ecf from wrongly named <u>solution</u> in first mark ALLOW: evaporation etc from potassium chloride / titration	salt <u>solution</u> withou	
	F	REJECT: if method incorrect e.g. precipitation the mar	k for part (ii) is zero	in total.
(b) (i)		(NH ₄) ₃ PO ₄ ALLOW: PO ₄ (NH ₄) ₃		[1]
(ii)		molar mass (NH ₄) ₃ PO ₄ = 149; ALLOW: ecf from wrong formula in part (i)		[1]
	1	% by mass = 28.2 ALLOW: 28.19 / 28 ALLOW: ecf from wrong molar mass		[1]
(c) (i)	-	Ca(OH) ₂ + 2H ⁺ \rightarrow Ca ²⁺ + 2H ₂ O ALLOW: Ca ²⁺ + 2OH ⁻ + 2H ⁺ \rightarrow Ca ²⁺ + 2OH ⁻ + 2H ₂ O ALLOW: OH ⁻ + H ⁺ \rightarrow H ₂ O (or multiples)		[1]
(ii)	r <i>H</i>	ammonium phosphate (reacts with calcium hydroxide nitrogen (content) with ammonium phosphate ALLOW: reverse arguments IGNORE: ammonia poisonous / potassium nitrate is m	ore soluble	[1]
	ı	REJECT: loses nitrogen gas / potassium nitrate has a	greater % of nitroge	n
	,	(excess) sodium hydroxide and aluminium (powder / f OW: add sodium hydroxide and Devarda's alloy	oil and warm) ;	[1]
		nonia given off / gas (given off) turns red litmus blue; Ξ : this mark is dependent on correct reagents A l + Na	ОН	[1]
ad	dd i	rnative: iron(II) sulfate then concentrated sulfuric acid (1 mark		

Mark Scheme: Teachers' version

Syllabus

Paper

Page 10

brown ring forms at the interface (1 mark)