UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS **GCE Ordinary Level**

www.papacambridge.com MARK SCHEME for the May/June 2012 question paper

for the guidance of teachers

4037 ADDITIONAL MATHEMATICS

4037/12

Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2012 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	S.	ļ
	GCE O LEVEL – May/June 2012	4037	Da	l

Mark Scheme Notes

Marks are of the following three types:

- ambridge.com Method mark, awarded for a valid method applied to the problem. Method Μ marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- А Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- В Accuracy mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol $\sqrt{}$ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2, 1, 0 means that the candidate can earn anything from 0 to 2.

Page 3	Mark Scheme: Teachers' version	Syllabus	i A
	GCE O Level – May/June 2012	4037	122
The fol	lowing abbreviations may be used in a mark scheme	e or used on the s	cripts: Cannut
AG	Answer Given on the question paper (so extra ensure that the detailed working leading to the re		eded to
BOD	Benefit of Doubt (allowed when the validity of absolutely clear)	f a solution may	not be

- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)

Penalties

- A penalty of MR -1 is deducted from A or B marks when the data of a MR –1 question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt{}$ " marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy.
- OW –1,2 This is deducted from A or B marks when essential working is omitted.
- This is deducted from A or B marks in the case of premature PA –1 approximation.
- S –1 Occasionally used for persistent slackness - usually discussed at a meeting.
- EX –1 Applied to A or B marks when extra solutions are offered to a particular equation. Again, this is usually discussed at the meeting.

				1222
	Page 4	Mark Scheme: Teachers		Syllabus Contraction of the second se
		GCE O LEVEL – May/Ju	une 2012	4037 732
1	(i) $\frac{2}{21}(7x-5)$	$)^{\frac{3}{2}}$ (+ c)	B1	Syllabus4037B1 for multiplication by $\frac{2}{3}$, or differenceB1 for $(7x-5)^{\frac{3}{2}}$, B1 for $\frac{1}{7}$
			B1, B1	B1 for $(7x-5)^{\frac{3}{2}}$, B1 for $\frac{1}{7}$
	(ii) $\frac{2}{21}\left(16^{\frac{3}{2}}-\right)$	$9^{\frac{3}{2}}$) (= $\frac{2}{21}(64-27)$)	M1	M1 for correct use of limits, must have attempted integration, must be using their
	$=\frac{74}{21}$ or a	wrt 3.52 or $3\frac{11}{21}$	A1 [5]	$(7x-5)^{\frac{2n+1}{2}}$ from (i)
2	$4u^2 - 5u + 1 = (4u - 1)(u - 1)$	-	B1, M1	B1 for $2^{2x+2} = 4u^2$ or 4×2^{2x} or $2^2 \times 2^{2x}$ or 2^2u^2 M1 for attempt to obtain a 3 term quadratic
	or $(4.2^x - 1)(2^x)$	·	DM1	equation in terms of either or, equated to zero. DM1 for solution of quadratic equation
	$2^x = \frac{1}{4}, 2^x = 1$	l	A1	A1 for both
	leading to $x =$	-2, 0	A1	A1 for both
	1	ne for one correct factor:		
	$2^x = \frac{1}{4}$, leading		[A1]	
	$2^x = 1$, leading	to $x = 0$	[A1] [5]	
3	$\frac{\cos A}{\sin A} + \frac{\sin A}{1 + \cos A}$	A	B1	B1 for $\cot A = \frac{\cos A}{\sin A}$
	$= \frac{\cos A + \cos^2}{\sin A(1+)}$	$\frac{A + \sin^2 A}{\cos A}$	M1	M1 for obtaining as a single fraction
	$=\frac{(1+\cos A)}{\sin A(1+\cos A)}$	<u>)</u> (A)	M1	M1 for use of $\cos^2 A + \sin^2 A = 1$
	$=\frac{1}{\sin A}$	= cosecA	A1	A1 for correct simplification – answer given.
	Alternate solut	ion:		
	$\cot A + \frac{\sin A}{(1+\cos A)}$		[M1]	M1 for multiplying by $(1 - \cos A)$
	$= \cot A + \frac{\sin A}{s}$	$\frac{(1-\cos A)}{\sin^2 A}$	[M1]	M1 for use of $\cos^2 A + \sin^2 A = 1$ anywhere
	$= \cot A + \frac{1 - \cot A}{\sin A}$	$\frac{\log A}{A}$	[M1]	M1 for cancelling sin A
	$= \cot A - \cot A$	$+\frac{1}{\sin A}$ leading to cosecA	[A1] [4]	A1 for subtraction and simplification

				Mary .
	Page 5	Mark Scheme: Teachers		Syllabus r
		GCE O LEVEL – May/Ju		4037 732
4	$5x^{2} - 21x + 4 = (5x - 1)(x - 4)$	$\frac{5x}{5} \text{ or, using } x = \frac{2-3y}{5}$ = 0 or $3y^2 + 17y - 6 = 0$ = 0 or $(3y - 1)(y + 6) = 0$ x = 4, y = -6	M1 M1 DM1 A1, A1	Syllabus 4037 M1 for substitution to get an equa of one variable M1 for attempt to form a 3 term quadra equation = 0 DM1 for solution of quadratic equation A1 for each 'pair'
	Alternate subst $x = \frac{2y}{3+y}$ or		[5]	
5	(i) $(2-x^2)\overline{(2-x^2)^2}$	$\frac{3}{3x+1)} - 2x\ln(3x+1)$	B1 M1 A1	B1 for differentiating $ln(3x + 1)$ correctly M1 for correct attempt at product A1 for all else correct
		$\frac{2^{2} 2x - 5(4 - \tan 2x)}{25x^{2}}$ $\frac{\sec^{2} 2x - 5(4 - \tan 2x)}{(5x)^{2}}$	B1 M1 A1 [6]	B1 for differentiating $tan(4 - 2x)$ correctly M1 for correct attempt at quotient or product A1 for all else correct
6	or $\frac{8}{\sqrt{3}+1}$	$\overline{\frac{-1}{\sqrt{3}}} = 4(\sqrt{3} - 1)$ $= a(\sqrt{3} - 1),$ $\overline{(-1)}(\sqrt{3} + 1)$	M1	M1 for rationalisation or attempt to form equation
	$8 = a (\sqrt{3})$ $a = 4$	$(\sqrt{3}+1)$	A1	
	(ii) $\sin 60 = \frac{1}{\sqrt{2}}$ $\tan 60 = \sqrt{2}$	$\frac{\sqrt{3}}{2} = \frac{h}{4(\sqrt{3}-1)}$ $\sqrt{3} = \frac{h}{2(\sqrt{3}-1)}$	M1	M1 for use of sine or tangent and their value of <i>a</i> from (i) or $\frac{8}{\sqrt{3}+1}$
		$(-1))^2 = h^2 + (2(\sqrt{3} - 1))^2$ $\sqrt{3}$ ANSWER GIVEN	A1	or Pythagoras, A1 for rearranging and simplifying correctly to obtain given answer.
	2	$4(\sqrt{3}-1)(6-2\sqrt{3})$ -1)4($\sqrt{3}-1$)sin 60°	M1	M1 for valid method for area using their <i>a</i> from (i) or $\frac{8}{\sqrt{3}+1}$
	$= 16\sqrt{3} -$	24	A1 [6]	A1 working must be seen

	Page 6	Mark Scheme: Teachers'	Syllabus Syllabus	
		GCE O LEVEL – May/Ju		4037 2030
			[ien,
7	(i)		B1	B1 for shape
			B1	Number of the stateSyllabus4037B1 for shapeB1 for $x = -2, 3$ B1 for $y = 6$
			B1	B1 for $y = 6$
	(ii) $x^2 - x - 6$	5 = 6, leading to	B1	B1 for one correct answer
	x = -3, 4	(www)	B1	B1 for a second correct answer
	$x^2 - x - 6$ $x = 0, 1$	5 = -6, leading to (www)	B1 [6]	B1 for a third and fourth correct answer
8		$\frac{20\pi}{3}$ or 20.94, 20.9	B1	B1 for arc length correct
	$\tan\frac{\pi}{3} = \frac{4}{3}$	$\frac{4X}{10}$, AX = 10 $\sqrt{3}$, 17.3 (or XB)	B1	B1 for <i>AX/XB</i>
		r = awrt 55.6 or $20\sqrt{3} + \frac{20\pi}{3}$	B1	B1 for final answer
	(ii) Area of s	vector $AOB = \frac{1}{2}10^2 \frac{2\pi}{3}$ or 104.7	B1	B1 for sector area correct
	Area of <i>C</i>	or 105 $DAXB = 100\sqrt{3}$ or 173.2	M1	M1 for valid attempt at area $OAXB$, using their BY from part (i) (10 \times their BY)
	Shaded an	rea = awrt 68.5 or $100\sqrt{3} - \frac{100\pi}{3}$	M1	BX from part (i) $(10 \times \text{their } BX)$ M1 for area $OAXB$ – sector area used (independent)
			A1	Must be considering a quadrilateral, not a
_			[7]	triangle.
9	(i) 250		B1	B1 for 250
	(ii) $8 = e^{\frac{x}{100}}$		B1	B1 for $8 = e^{\frac{x}{100}}$
		h 'their 8' or $x = 100$ ln their 8	M1	M1 for dealing with e correctly, using ln
		or awrt 208	A1	A1 for awrt 208
	(iii) $\frac{\mathrm{d}N}{\mathrm{d}x} = \frac{1}{2}\mathrm{e}$		B1, B1	B1 for $e^{\frac{x}{100}}$, B1 for $\frac{1}{2}e^{\frac{x}{100}}$ or $\frac{50}{100}e^{\frac{x}{100}}$
	$45 = \frac{1}{2}e^{\frac{1}{10}}$	<u>x</u> 00	M1	M1 for equating their $\frac{dN}{dx}$ to 45 and attempt
	$e^{\frac{x}{100}} = 90$), so $N = 4700$	A1	to solve A1 for 4700
	-	(awrt 4700)	[8]	

Page 7	Mark Scheme: Teachers GCE O LEVEL – May/Ju		Syllabus 4037
(a) (i) f'(x) =	$= -(2 + x)^{-2}$	B1	First B1 may be implied by a co
	$=2(2+x)^{-3}$	B1	Syllabus r 4037 4037 First B1 may be implied by a control for f " (x) If done by quotient rule, allow unsimplied M1 for a valid attempt at the inverse
(ii) $y = \frac{1}{2}$	$\frac{1}{x}, x = \frac{1}{y} - 2$	M1	M1 for a valid attempt at the inverse
$\mathbf{f}^{-1}\left(x\right)$	$= \frac{1}{x} - 2 \text{ or } \frac{1 - 2x}{x}$	A1	A1 must be in correct form, allow $y = \dots$
(iii) $f^{2}(x) =$	$=\left(\frac{1}{2+\frac{1}{2+x}}\right)=\frac{2+x}{5+2x}$	M1	M1 for correct attempt at $f^2(x)$
	$\left(2+\frac{1}{2+x}\right)^{-5+2x}$	DM1	DM1 for attempt at solution of $f^2(x) = -1$
Equati	ng to -1 leads to $x = -\frac{7}{3}$ or -2.33	A1	A1 for $x = -\frac{7}{3}$ or equivalent
(b) (i) gh (x)	or gh	B1	B1 for either form
(ii) kg (<i>x</i>)	or kg	B1 [9]	B1 for either form
(i) P (3, 1)		B1, B1	B1 for each coordinate
Grad AB =	$\frac{18}{12}$	B1	B1 for gradient of <i>AB</i>
\perp grad $-\frac{1}{2}$	$\frac{2}{3}$	√ B1	√B1 for perpendicular gradient
<i>PQ</i> : <i>y</i> – 1 =	$= -\frac{2}{3}(x-3) \qquad (2x+3y=9)$	√B1	*B1 on their perp gradient and their point <i>P</i> Must be $y = \dots$
(ii) Q (-15, 13)		M1 A1	M1 for use of $y = 13$ and their PQ equation. A1 for both coordinates (can be implied)
(iii) Area = $\frac{1}{2}\sqrt{2}$	$\sqrt{18^2 + 12^2} \sqrt{8^2 + 12^2}$	M1	M1 for a valid attempt at area $\frac{1}{2} \times PQ \times PB$
or Area = -	$\frac{1}{2} \begin{vmatrix} 3 & 11 & -15 & 3 \\ 1 & 13 & 13 & 1 \end{vmatrix}$		Matrix method using their coordinates correctly
or Area = -	$\frac{1}{2} \times 26 \times 12$		$\frac{1}{2} \times QB \times \text{vertical perp height}$
= 1	56	A1 [9]	

					Mary Anna
	Page 8	Mark Scheme: Teache			Syllabus Syllabus
		GCE O LEVEL – May/	June 2012		4037 23
12	EITHER (i) velocity =	0	M1	M1	$\frac{Syllabus}{4037}$ r for their velocity (must in numeric n)) + (54i + 16j)
		= (54 i + 16 j) + (36 i + 48 j) 4 j ANSWER GIVEN	A1		$(1) + (54\mathbf{i} + 16\mathbf{j})$
	(ii) (54i + 16j	(12ti + 16tj)	M1, A1		for position vector + (their numeric city vector × time)
	(iii) At 16 00, ship has '	travelled' $(102\mathbf{i} + 80\mathbf{j})$	B1		for (102 i + 80 j)
		s to do this in 2 hours y of boat $(51\mathbf{i} + 40\mathbf{j})$ $1^2 + 40^2$	M1	M1 :	for attempt at velocity of boat and speed
	= 64.8		A1		
	(iv) (51i + 40j	(1) - (12i + 16j)	B1	B 1, a	allow unsimplified but must be correct
	= 39 i +24	j			
	(v) $\tan \alpha = \frac{5}{4}$	$\frac{1}{0}$	M1	M1 :	for use of tan and their velocity vector
	angle $= 5$	1.9	A1 [10]		

Page 9	Mark Scheme: Teachers' GCE O LEVEL – May/Jui			Syllabus 4037 w unsimplified	
2 OR				ambr.	
(i) \overrightarrow{OQ} a + $\frac{1}{2}$	$\frac{1}{3}(b-a)$	B 1	Allov	w unsimplified	2
$=\frac{2}{3}\epsilon$	$\mathbf{a} + \frac{1}{3}\mathbf{b}$.6
$\overrightarrow{PQ} = -\frac{5}{4}$	$\mathbf{b} + \mathbf{a} + \frac{1}{3} \ (\mathbf{b} - \mathbf{a})$	√ B1		by through on their OQ , allow	
$=\frac{2}{3}\epsilon$	$\mathbf{h} - \frac{11}{12} \mathbf{b}$		unsir	nplified	
(ii) $\overrightarrow{QR} = \lambda \mathbf{a}$	$-(a+\frac{1}{3}(b-a))$	M1	M1 f	for λa – their \overrightarrow{OQ}	
$=\lambda \mathbf{a}$	$-\frac{2}{3}\mathbf{a}-\frac{1}{3}\mathbf{b}$	A1	A1 –	allow unsimplified	
(iii) $\overrightarrow{QR} = \mu(\overrightarrow{R})$	$\overrightarrow{PQ} + \overrightarrow{QR}$)	M1	M1 f	for attempt to obtain \overrightarrow{QR} in terms of \overrightarrow{P}	į
$(1-\mu)\overline{Q}\overline{P}$	$\vec{R} = \mu \vec{PQ}$	M1	M1 f	for attempt to simplify	
$QR = \frac{\mu}{1 - \mu}$	$\frac{1}{\mu}\left(\frac{2}{3}\mathbf{a}-\frac{11}{12}\mathbf{b}\right)$	A1			
(iv) Equating	b 's $-\frac{11}{12}\frac{\mu}{1-\mu} = -\frac{1}{3}$	M1	M1 f solve	for equating like vectors and attempt to	
$\mu = \frac{4}{15}$		A1	A1 fo	or each	
$\lambda = \frac{10}{11}$		A1 [10]			