Name

www.PapaCambridge.com

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

PHYSICAL SCIENCE

0652/03

Paper 3

October/November 2004

1 hour 15 minutes

Candidates answer on the Question Paper. No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen in the spaces provided on the Question Paper. You may use a pencil for any diagrams, graphs, tables or rough working. Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all questions.

The number of marks is given in brackets [] at the end of each question or part question. A copy of the Periodic Table is printed on page 16.

If you have been given a label, look at the details. If any details are incorrect or missing, please fill in your correct details in the space given at the top of this page.

Stick your personal label here, if provided.

For Exami	iner's Use
1	
2	
3	
4	
5	
6	
7	
8	
9	
Total	

Answer all the questions.

Write your answers in the spaces provided.

www.PapaCambridge.com 1 Element X burns in excess air to form the oxide XO_2 . This oxide dissolves in water to form an acid $\rm H_2 \ensuremath{\textit{XO}}_3.$ The two reactions are represented by the following equations.

$$X + O_2 = XO_2$$

$$XO_2 + H_2O = H_2XO_3$$

The relative atomic mass, A_r , of element X is 32. Calculate the number of moles in 4.8 g of X.

number of moles =[2]

How many moles of oxygen gas are required to react completely with 4.8 g of X?

number of moles of oxygen =[1]

How many moles of H_2XO_3 would be formed if all the XO_2 formed was dissolved in (iii)

number of moles $H_2XO_3 = \dots [1]$

(iv) Calculate the mass of H_2XO_3 formed.

mass of H_2XO_3 formed =[2]

I	For
Į	Examiner's
	1100

X is because	.[1	1]	l
--------------	-----	----	---

2 Fig. 2.1 shows three situations in which forces act on a book.

Fig. 2.1

A shows the book resting on a bench.

B shows the book being dragged horizontally for a distance of 0.3 m by a net pulling force of 11 N.

C shows the book being lifted through a vertical distance of 0.5 m.

In **B** and **C** the movement takes place over a period of 0.7 s.

Calculate the work done and the power used in each case. Show any working that you do and write down any equations that you use.

Case A

work done =	
power used =	
•	[2]

Case B

Case C

3 Use the Periodic Table on page 16 to help you answer the following questions. (a) Use your knowledge of the trends across Period 3 (sodium to argon) to deduce which these elements is the metal with the lowest melting point,[1] (i) (ii) is a covalent macromolecule,[1] (iii) has four electrons in the outer shell of one atom,[1] forms an ion with a charge of -2,[1] is a reactive gas at room temperature.[1] (b) The boiling point of argon is 87 K. Explain what this very low boiling point suggests about the forces between argon atoms.[2] **(c)** Suggest why sodium is a more reactive metal than aluminium.

www.PapaCambridge.com Fig. 4.1 shows a block of a thermal conductor that is being heated at the left edge. 4 is painted silver.

Fig. 4.1

(a) With the aid of a diagram explain how heat is transferred along the block.

 	 [4]

	4
	7
	7
(b)	When the two thermometers show constant temperatures the block is said thermal equilibrium. The block is still being heated. Explain why the block reaches thermal equilibrium.
	[3]
(c)	Suggest and explain what difference painting the block a dull black colour would make.
	[3]

			8	WWW. P.	For
5	(a)	(i)	Draw the arrangements of the electrons in satom of oxygen. You may wish to refer to the F	shells for an atom of carbon Periodic Table on page 16.	Use
		elect	electron arrangement of carbon electron	shells for an atom of carbon Periodic Table on page 16. ctron arrangement of oxygen	ridge.com
				[2]	
		(ii)	Draw a dot-cross diagram to show how bon oxygen in carbon dioxide.	ds are formed between carbon and	
		(iii)	By referring to your diagram, explain why carb	[2] oon dioxide is relatively unreactive.	
				[2]	

For Examiner's Use

(b)	Magnesium oxide has a similar relative formula mass to carbon dioxide, but magnification oxide is a very high melting point solid. Explain this difference in terms of the structure of the two oxides.	
	[2]	

www.papaCambridge.com Fig. 6.1 shows how the ripples in a pond spread out as they pass through a gap between 6 concrete pillars.

Fig. 6.1

(a) Name the process by which the waves spread out after passing through the gap between the pillars. **(b)** Mark on the diagram the wavelength of the waves. [1] (c) The diagram is drawn $\frac{1}{20}$ th full size. The frequency of the waves is 3 Hz. Calculate the speed of the waves. Show all your working and write down any equation that you use.

wave speed =[3]

www.PapaCambridge.com (d) Explain how you would use the pond and any other necessary apparatements (i) reflection and (ii) refraction of waves. In each case draw a diagram help your explanation.

reflection

[3	31
refraction	
retraction	
[3	3]

7	(a)	A n	umber of pollutants may be found in car exhaust gases. Explain how the found in car exhaust gases.
		(i)	oxides of nitrogen[2]
		(ii)	carbon monoxide
	(b)	Nar	ne one other pollutant formed in car exhaust gases.
			[1]
	(c)	-	lain how nitrogen oxides in the atmosphere can cause damage to limestone dings.
			[2]
	(d)	fum	n nitrogen monoxide, NO, and carbon monoxide, CO, can be removed from exhaust es by using a catalyst to make them react together. The products are carbon dioxide nitrogen. Write a balanced equation for this reaction.
			[2]
8			shows a transformer. The output is connected to a lamp rated at 6 V, 1.8 W and the connected to a 220 V supply.
			220 V
			Fig. 8.1
	(a)	(i)	Name the type of transformer used.

	the state of the s	
	13	For Examinar's
(ii)	Calculate the ratio of the number of turns on the secondary to the number on the primary.	Use
	Write down the equation that you use and show your working.	Orio
	Calculate the ratio of the number of turns on the secondary to the number on the primary. Write down the equation that you use and show your working.	Se.com
	turns ratio = [2]	
b) (i)		
	Write down the equation that you use and show your working.	
	current =[3]	
(ii)	Calculate the working resistance of the lamp. Write down the equation that you use and show your working.	
	resistance = [2]	
(iii)	Explain why the initial current for the lamp is likely to be higher than the normal working current.	
	working current.	
	[3]	

e salt lead(II) chloride is insoluble in cold water, whereas the salt lead(II) nitrate is Lead(II) chloride is to be prepared from a solution of lead(II) nitrate. (i) What other solution should be added to the solution of lead(II) nitrate? (ii) How would you decide when to stop adding this solution? (iii) How would you separate a sample of lead(II) chloride from the mixture?	and
(ii) How would you decide when to stop adding this solution?	[1]
(ii) How would you decide when to stop adding this solution?	[1]
(ii) How would you decide when to stop adding this solution?	[1]
(iii) How would you separate a sample of lead(II) chloride from the mixture?	[1]
	[2]

15

BLANK PAGE

www.PapaCambridge.com

	Elements
DATA SHEET	The Periodic Table of the

							Gre	Group									
_												<u>\</u>	>	IN	II/	0	
						1 T Hydrogen										4 He Helium 2	
Lithium Bery	9 Be Beryllium						1				11 Boron 5	12 Carbon 6	14 N itrogen 7	16 Oxygen	19 Fluorine	20 Ne Neon 10	
Na Magn	24 NG Magnesium 2										27 A1 Aluminium 13	28 Si Silicon	31 Phosphorus 15	32 S Sulphur 16	35.5 C1 Chlorine	40 Ar Argon	
		48	51	52	22	99	65	29	64	99	70	73	75	62	80	84	
otassium Calc	Calcium Scandium	Titanium	Vanadium 23	Chromium	Mn Manganese 25	F@ Iron	Cobalt 27	Nickel 28	Copper 29	Zn Zinc 30	Gal lium 31	Ge Germanium 32	AS Arsenic 33	Selenium 34	Br Bromine 35	Krypton	1
85		91	93	96		101	103	106	108	112	115	119	122	128	127	131	16
		Z	QN	Mo	JC	Ru	뫕	Pd	Ag	S	In	Sn	Sb	Te	Ι	×	
(ubidium Stror	Strontum Yttrium	Zirconium 40	Niobium 41	Molybdenum 42	Technetium 43	Ruthenium 44	Rhodium 45	Palladium 46	Silver 47	Cadmium 48	Indium 49	1in	Antimony 51	Tellurium 52	lodine 53	Xenon 54	
		178	181	184	186	190	192	195	197	201	204	207	209				
		Ξ	<u>n</u>	>	Re	Os	ĭ	£	Αn	Нg	11	Ър	. <u>.</u>	Po	Αŧ	Rn	
Saesium Bar 56	Barium Lanthanum 57	* Hafnium	Tantalum 73	Tungsten 74	Rhenium 75	Osmium 76	Iridium 77	Platinum 78	Gold 79	Mercury 80	Thallium 81	Lead 82	Bismuth 83	Polonium 84	Astatine 85	Radon 86	
rancium Rad	Radium Actinium .	+															,
3-71 Lantha	3-71 Lanthanoid series		140	141	144	200	150	152	157	159 H	162	165	167	169	173	175	
0-103 Actinoid series	oid series		Cerium 58	Praseodymium 59	Neodymium 60	Promethium 61	Samarium 62	Europium 63	Gadolinium 64	Terbium 65	Dysprosium 66	Holmium 67	Erbium 68	Thulium 69	Ytterbium 70	Lutetium 71	1
g	a = relative atomic mass	omic mass	232		238											ľ	n
× >	X = atomic symbol	nbol	Т	Ра	D	ď	Pu	Am	Cm	BK	ర	Es	Fm	Md	8 N	I	2.
۵	b = proton (atomic) number	mic) number	Thorium 90	Protactinium 91	Uranium 92	Neptunium 93	Plutonium 94	Americium 95	Curium 96	Berkelium 97	Californium 98	Einsteinium 99	Fermium 100	Mendelevium 101	Nobelium 102	Lawre 103	000
			The	The volume of one mole of any gas is $24\mathrm{dm}^3$ at room temperature and pressure (r.t.p.).	one mole	of any ga	as is 24 dr	ກ³ at roon	n tempera	ature and	pressure	(r.t.p.).			age of	Canby.	Cambridge.C
															20		

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).