

		Centre Number			
Candidate Numbe					
		Ca	ndida	te Nu	mber
		Cai	ndida	te Nu	mber

General Certificate of Secondary Education 2019

Further Mathematics

Unit 1 (With calculator)

Pure Mathematics

[**GFM11**]

GFM11

FRIDAY 14 JUNE, AFTERNOON

TIME

2 hours.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number in the spaces provided at the top of this page. You must answer the questions in the spaces provided.

Do not write outside the boxed area on each page.

Complete in black ink only. Do not write with a gel pen.

All working **must** be clearly shown in the spaces provided. Marks may be awarded for partially correct solutions.

Where rounding is necessary give answers correct to **2 decimal places** unless stated otherwise. Answer **all fourteen** questions.

INFORMATION FOR CANDIDATES

The total mark for this paper is 100.

Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.

You may use a calculator.

The Formula Sheet is on page 2.

Formula Sheet

PURE MATHEMATICS

Quadratic equations: If
$$ax^2 + bx + c = 0$$
 $(a \ne 0)$

then
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Differentiation: If
$$y = ax^n$$
 then $\frac{dy}{dx} = nax^{n-1}$

Integration:
$$\int ax^n dx = \frac{ax^{n+1}}{n+1} + c \qquad (n \neq -1)$$

Logarithms: If
$$a^x = n$$
 then $x = \log_a n$

$$\log\left(ab\right) = \log a + \log b$$

$$\log\left(\frac{a}{b}\right) = \log a - \log b$$

$$\log a^n = n \log a$$

Matrices: If
$$\mathbf{A} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

then
$$\det \mathbf{A} = ad - bc$$

and
$$\mathbf{A}^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$
 $(ad - bc \neq 0)$

Parameter Control of Research Control of Resea

$$\mathbf{A} = \begin{bmatrix} 2 & 3 \\ -1 & 4 \end{bmatrix} \quad \text{and} \quad \mathbf{B} = \begin{bmatrix} 1 & -2 \\ -3 & 5 \end{bmatrix}$$

Find the value of $\mathbf{B} - \mathbf{A}^2$

Answer _____ [4]

[Turn over

11900

Comments of the control of the contr

2 A function f(x) is defined by

$$f(x) = x^2 - x + 4$$

(i) Use the method of completing the square to rewrite f(x) in the form

$$(x + a)^2 + b$$

where a and b are constants.

20 7 Learning

DED 7 Learning

(ii) Hence find the minimum value of f(x) and the value of x for which it occurs.

Answer Minimum value _____[1]

when
$$x =$$
 [1]

3 (a) Find $\frac{dy}{dx}$ if $y = \frac{3}{8}x^2 + \frac{5}{x^4} - 12x$

Answer _____[3]

(b) Find $\int \left(\frac{3}{4x^2} - 2x^3\right) dx$

Answer _____[3]

[Turn over

11900

Comments
Com

4 (a) Sketch the graph of $y = \cos x$ for $-90^{\circ} \le x \le 360^{\circ}$

De leaning

[2]

(b) (i) Solve the equation

$$\cos x = -0.184$$

for
$$0^{\circ} \leq x \leq 360^{\circ}$$

Give your answers correct to 1 decimal place.

Answers _____[2]

(ii) Hence solve the equation

$$\cos\left(2\theta - 15^{\circ}\right) = -0.184$$

for
$$90^{\circ} \leq \theta \leq 180^{\circ}$$

Give your answer correct to 1 decimal place.

Answer [2]

[Turn over

11900

Comments
Com

5 Matrices **P** and **Q** are defined by

$$\mathbf{P} = \begin{bmatrix} -3 & 2 \\ 1 & -4 \end{bmatrix} \text{ and } \mathbf{Q} = \begin{bmatrix} 7 \\ 1 \end{bmatrix}$$

Using a matrix method, find the matrix X such that

$$PX = Q$$

Answer [4]

y Learning

Rewardin

6	Solve	the	ineo	uality
v		uic	11100	[uuiit)

Comments
Com

$$x^2 - 4x - 5 < 0$$

You **must** show clearly each stage of your solution.

Answer _____[4]

Turn over

7 Solve the following set of simultaneous equations

$$2x + 3y + z = 5$$

20 7 Learning

Learning Co.

20

Paraming

Research

Research

Research

Research

Research

Research

$$3x - 4y + 2z = -9$$

$$x + 5y - 3z = 6$$

You **must** show clearly each stage of your solution.

Answer
$$x =$$
, $y =$, $z =$ [8]

You may use this page for Question 7 if needed. (Questions continue overleaf) [Turn over 11900

Comments
Com

_		
8	A curve is defined by the equation	y = x(3x - 5)(x + 1)

(i) Write down the **coordinates** of the points where the curve meets the x-axis.

Answer _____[3]

20 7 Learning

(ii) Find the coordinates of the turning points of the curve.

Answer ______[6]

(iii) Using calculus, identify each turning point as either a maximum or a minimum point. You must show working to justify your answer. Answer _____ [2] (iv) Sketch the curve on the axes below. [2] [Turn over

Comments
Com

11900

9 (a) If $2 \log y = 3 \log x$ write y in terms of x.

Answer _____ [2]

(b) (i) If $4 \times 2^x = 2^y$ show that

$$y = x + 2$$

[1]

Page 1 Learning Page 1 Learnin

Learning

A Learning

Research

20 2 Locaming

20

Research 7 Learning Research

Comments
Com (ii) Hence or otherwise solve the equation $6^{3x-2} = 4 \times 2^x$

11900

Answer _____[4]

[Turn over

10 Rory has a set of objects, each with a circular base. He records the base radius, r cm, and the volume, $V \text{ cm}^3$, of 5 of these objects.

DE Loaming

The results are given in the table below.

Base radius r (cm)	Volume V (cm ³)	
3.4	98.0	
4.6	221.7	
5.2	308.7	
6.8	636.9	
7.5	829.8	

Rory believes that a relationship of the form

$$V = ar^b$$

exists, where a and b are constants.

(i) Verify that a relationship of the form $V = ar^b$ exists by drawing a suitable straight line graph on the grid opposite.

Show clearly the values used, correct to 3 decimal places, in the table above.

Hence find the values of a and b, correct to 1 decimal place.

Use the formula $V = ar^b$ with your values for a and b to calculate				
(ii) the volume of an object with radius 5.6 cm, giving your answer to the nearest				
	Answer	cm ³ [1		
	7 1115 W C1			
Give your answer correct to t make.	the nearest cm and state any assum	ption that you		
	Answer	cm [2		
Assumption				
		[1		

Learning

A Learning

Research

Partity

Research

Partity

Research

Research

Research

Research

Learning Research

20 7 Lecarding

Remarks

G.

Learning Research

Dayling Learning Research

Provention

The second of the

De planting
Remorting
Planting
Remorting
Remorting

Roserdo

Por Roserdo

Remarks

Population

Remarding

J. Serving

Remarding

Remarding

Remarks

Parenting

Tuesday

G:

11 Find the equation of the **normal** to the curve

$$y = 2 - \frac{3}{x}$$

at the point where the curve cuts the *x*-axis.

Comments of the comments of th

11900

Answer ______[5]

[Turn over

12. ((i)	Expand	and	simplify	, the	expression
14 (1)	Expand	anu	Simping	/ uic	CAPICSSIOII

$$(x + 3)(x - 4)(2x + 5)$$

y Learning

Rewardin

Day Learning

Can
Pawardin

Learning

20 7 Lawrishy

20

20 Learning

20 7 Learning

20 1 Learning

Research

20 7 Learning

Rowarding 20 1 Leaving

Research

Page 1

Junearity

Research

Research

Research

Research

Junearity

Research

Junearity

Research

Answer [3]

(ii) Hence simplify fully the expression

$$\frac{(x+3)(x-4)(2x+5) - 2x(x^2+2) - 18}{x^2 - 13x}$$

Answer _____ [4]

[Turn over

Comments
Com

$$y = k + 2x - 3x^2$$

y Learning

Rewardin

200 2 Loaming

where k is a constant.

(i) Find expressions in terms of k for the area of A and the area of B.

Answer Area of A	[3]
Area of B	[2]
(ii) Given that the area of A is $\frac{5}{9}$ of the area of B , find the variable.	lue of k .
Answer	[2]
11900	[Turn over

Comments
Com

14 The owners of a hotel wish to build a swimming pool in the hotel grounds. They plan to build a rectangular pool ABCD for adults, of length *x* m and width *y* m.

At one end of the pool they plan to add a children's pool AEFG, as shown in the diagram below.

The length and width of the children's pool are to be $\frac{1}{3}$ of the length and width of the adults' pool, respectively.

Write down, in terms of x and y,

(i) the total area of the two pools,

Answer _____ m² [1]

DE 7 Learning

20 7 Loaning

20

20

Towards

Towards

Towards

Towards

-	(ii)	the total length	of the perimete	er round the oute	er edges of	the nools
١,	ш	i inc ioiai iongin	of the permien	of round the out	i cuges or	the pools.

Answer m [1

The total length of the perimeter round the outer edges of the pools is 96 m.

(iii) Show that

Comments
Com

11900

$$y = 36 - \frac{3}{4}x$$

[2]

[Turn over

(iv)	Find the dimensions of the pools wh that it is a maximum.	ich will give a maximum total area,	showing
	Answer Adults' pool	m by	m
		m by	
	THIS IS THE END OF T	THE QUESTION PAPER	
11900			

Paramity

Parami

Learning Research

20 7 Lecarding

Learning

Remarks

Remarks

Learning

Remarks

Learning Research

Paraming Research

Provention

The second of the

Described Research

Danserthe Danser

Rowerding Learning

Daning Leaving

Research

J. Learning

G. Rosensin

Reading J. Learning

Remarding

J. Serving

Remarding

Remarding

Remarked 20 1 Loaning

Research

G:

Comments
Com

DO NOT WRITE ON THIS PAGE For Examiner's use only Question Marks Number 2 3 4 5 6 7 8 9 10 11 12 13

Examiner Number

Marks

14

Total

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright holders may have been unsuccessful and CCEA will be happy to rectify any omissions of acknowledgement in future if notified.

11900/5

