Centre Number

Candidate Number
\square

Double Award Science:

 Chemistry
Unit C1

Higher Tier

ML

[GDW22]

THURSDAY 17 MAY 2018, MORNING

TIME

1 hour, plus your additional time allowance.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number in the spaces provided at the top of this page.
You must answer the questions in the spaces provided.
Do not write outside the boxed area on each page or on blank pages.
Complete in black ink only. Do not write with a gel pen.
Answer all ten questions.

INFORMATION FOR CANDIDATES

The total mark for this paper is 70 .
Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.
Quality of written communication will be assessed in Question 4(b).
A Data Leaflet, which includes a Periodic Table of the Elements, is included in this question paper.

1 Transition elements form ions with different charges.
(a) Iron can form iron(II) oxide and iron(III) oxide.

Which one of the following statements would you expect to be correct?
Put a tick in the correct box.

Both these oxides of iron are white solids

Both these oxides of iron are coloured solids
\square
\square

One of the oxides is a white solid and the other is a coloured solid \square
(b) (i) Describe how you would carry out a flame test to identify the copper(II) ions in copper(II) chloride powder.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(ii) What is the flame colour for copper(II) ions?

BLANK PAGE DO NOT WRITE ON THIS PAGE (Questions continue overleaf)

2 Look at the diagram below. It shows the results of a paper chromatography experiment, using water as a solvent, to find out which dyes (A, B or \mathbf{C}) were present in brown, yellow and red food colourings.

(a) (i) What is the stationary phase in paper chromatography?
(ii) How can you tell that none of the food colourings are pure substances?
\qquad
\qquad
(iii) Which dye (\mathbf{A}, \mathbf{B} or \mathbf{C}) is the least soluble in the solvent used? Give a reason for your answer.

Dye: \qquad
Reason: \qquad
(b) Four green dyes (E, F, G and H) were investigated using chromatography. The chromatogram is shown below:

The dyes can be identified by calculating the R_{f} value for a particular solvent. Calculate the R_{f} value for dye \mathbf{G}.

Show your working out.
R_{f} value: \qquad

3 Read the article below which is about nanoparticles in sun creams. Answer the questions that follow.

Today many sun creams use nanoparticles. These sun creams are very good at absorbing ultraviolet radiation which can be harmful to the skin.
Due to their particle size, these sun creams spread more easily, and cover the skin better, which also saves money because less is needed. They are also transparent, unlike the more traditional sun creams which are white.

Nanoparticles of titanium oxide are used in some sun creams. Normal sized particles of titanium oxide are also used.
It is thought that nanoparticles can pass through the skin and travel more easily around the body than normal sized particles. It is possible that nanoparticles could be toxic to some types of cells such as skin, bone, brain and liver cells.
(a) How many atoms are in a typical nanoparticle?

Circle the correct answer.
a few
a few hundred
a few million
a few billion
(b) Give three advantages of using sun creams which contain nanoparticles. Do not write about the cost.

1. \qquad
2. \qquad
3. \qquad
(c) Sun creams that contain nanoparticles may be a risk to the body. Why?
\qquad

BLANK PAGE DO NOT WRITE ON THIS PAGE (Questions continue overleaf)

4 Sodium reacts with sulfur to form a compound called sodium sulfide．
（a）Complete the diagrams below to show the electronic structures of：

a sodium atom

a sulfur atom
(b) In this question you will be assessed on your written communication skills including the use of specialist scientific terms.

1. Describe how the electronic structures of both the sodium atom and the sulfur atom change in order to form sodium sulfide. Your answer should include the charges on the ions formed, and the formula of the compound produced.
\qquad
2. Describe at least two physical properties you would expect sodium sulfide to have.
\qquad
\qquad
\qquad
\qquad
\qquad

5 This question is about covalent bonding．
（a）Complete the three sentences below by filling in the missing words：

Covalent bonding is typical of \qquad elements and compounds．

Covalent bonds are strong and \qquad amounts
of \qquad are needed to break them．

Forces between covalent molecules are \qquad and are
called \qquad forces．
（b）Draw a dot and cross diagram to show the bonding in carbon dioxide， CO_{2} ． Show the outer electrons only．

BLANK PAGE DO NOT WRITE ON THIS PAGE (Questions continue overleaf)

6 This question is about relative formula masses, moles and the percentage of an element by mass in a compound.
(a) Complete the sentence below to define the term relative atomic mass.

The relative atomic mass $\left(A_{r}\right)$ of an atom is the \qquad
\qquad
\qquad
(b) Calculate the relative formula mass of each of the following substances. (relative atomic masses: $C=12, N=14, O=16, M g=24, C a=40$)
(i) calcium carbonate, CaCO_{3}
(ii) magnesium nitrate, $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$
(c) The relative formula mass of ethane, $\mathrm{C}_{2} \mathrm{H}_{6}$, is 30 .
(i) Calculate the number of moles in 150 g of ethane.
(ii) Calculate the percentage of carbon, by mass, in ethane, $\mathrm{C}_{2} \mathrm{H}_{6}$. Show your working out.

7 (a) Look at the table below. It gives information about the salts formed when three bases react with acids. Complete the table by filling in all the gaps.

Base	Acid	Formula of cation in salt	Formula of anion in salt	Formula of salt produced
calcium hydroxide	hydrochloric acid	Cl^{-}	CaCl_{2}	
	sulfuric acid	Cu^{2+}		CuSO_{4}
sodium hydroxide	nitric acid	Na^{+}	NO_{3}^{-}	

(b) A word equation is given below:

$$
\text { sodium hydroxide + hydrochloric acid } \longrightarrow \text { sodium chloride + water }
$$

Use this equation to help write an ionic equation to show the formation of sodium chloride.
\qquad
(c) What happens to the pH of an acidic solution if the concentration of the hydrogen ions increases?
\qquad
(d) A strong acid like nitric acid $\left(\mathrm{HNO}_{3}\right)$ is completely ionised in water.

What does this mean?
You may use words and/or an equation in your answer.
\qquad
\qquad
\qquad

BLANK PAGE DO NOT WRITE ON THIS PAGE (Questions continue overleaf)

8 Look at the table below. It gives information about the physical properties of four substances (A, B, C and D). Use the information to help you answer the questions which follow.

Substance	Melting point/ ${ }^{\circ} \mathrm{C}$	Boiling point/ ${ }^{\circ} \mathrm{C}$	Electrical conductivity when solid	Electrical conductivity when molten
A	808	1465	poor	good
B	3650	4200	good	good
C	660	2500	good	good
D	-182	-161	poor	poor

(a) Which substance (A, B, C or D) has a molecular covalent structure? Explain your choice.

Substance with a molecular covalent structure: \qquad
Explanation: \qquad
(b) Which substance (A, B, C or D) is made up of oppositely charged ions in a giant lattice structure? Explain your choice.

Substance made up of oppositely charged ions in a giant lattice structure:
\qquad
Explanation: \qquad
\qquad
(c) Which substance (A, B, C or D) could be graphite? Explain your choice.

Substance which could be graphite: \qquad
Explanation: \qquad
(d) Which substance (A, B, C or D) is a metal with a relatively low melting point? Explain your choice.

Substance which is a metal: \qquad
Explanation: \qquad
\qquad

9 Gallium is an element with atoms that have different mass numbers．
（a）Use the information in the table to calculate the relative atomic mass of gallium to one decimal place．

Show your working out．

Mass Number	Abundance
69	60%
71	40%

Answer \qquad
（b）Explain，in terms of atomic structure，why some atoms of gallium are heavier than others．
\qquad

10 (a) When chlorine gas is bubbled into sodium iodide solution, it causes a chemical reaction which results in a colour change in the solution.
(i) Write a balanced symbol equation for this reaction.
\qquad
(ii) Describe the colour change in the solution.

The colour changes from \qquad to
(iii) What is displaced in the reaction between chlorine and sodium iodide?
(b) When bromine is added to sodium iodide solution a similar reaction occurs to the reaction of chlorine with sodium iodide solution.

Explain why chlorine and bromine react in similar ways.
\qquad
\qquad
\qquad
11666.04 ML

THIS IS THE END OF THE QUESTION PAPER

DO NOT WRITE ON THIS PAGE

For Examiner's use only	
Question Number	Marks
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

Total	
Marks	

Examiner Number

Permission to reproduce all copyright material has been applied for.
In some cases, efforts to contact copyright holders may have been unsuccessful and CCEA will be happy to rectify any omissions of acknowledgement in future if notified.
11666.04 ML

Negative ions

Name	Symbol
Ammonium	NH_{4}^{+}
Chromium(III)	Cr^{3+}
Copper(II)	Cu^{2+}
Iron(II)	Fe^{2+}
Iron(III)	Fe^{3+}
Lead(II)	Pb^{2+}
Silver	Ag^{+}
Zinc	Zn^{2+}

Name	Symbol
Butanoate	$\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{COO}^{-}$
Carbonate	CO_{3}^{2-}
Dichromate	$\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$
Ethanoate	$\mathrm{CH}_{3} \mathrm{COO}^{-}$
Hydrogencarbonate	HCO_{3}^{-}
Hydroxide	OH^{-}
Methanoate	HCOO^{-}
Nitrate	NO_{3}^{-}
Propanoate	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COO}^{-}$
Sulfate	SO_{4}^{2-}
Sulfite	SO_{3}^{2-}

SOLUBILITY IN COLD WATER OF COMMON SALTS, HYDROXIDES AND OXIDES

Soluble

All sodium, potassium and ammonium salts
All nitrates
Most chlorides, bromides and iodides
EXCEPT silver and lead chlorides, bromides and iodides
Most sulfates EXCEPT lead and barium sulfates
Calcium sulfate is slightly soluble

Insoluble

Most carbonates
EXCEPT sodium, potassium and ammonium carbonates

Most hydroxides
EXCEPT sodium, potassium and ammonium hydroxides
Most oxides
EXCEPT sodium, potassium and calcium oxides which react with water

© CCEA 2017

COUNCIL FOR THE CURRICULUM, EXAMINATIONS AND ASSESSMENT
29 Clarendon Road, Clarendon Dock, Belfast BT1 3BG
Tel: +44 (0)289026 1200 Fax: +44 (0)289026 1234
Email: info@ccea.org.uk Web: www.ccea.org.uk

For first teaching from September 2017

THE PERIODIC TABLE OF ELEMENTS
Group

						${ }_{\substack{1 \\ \text { yturesen }}}^{\mathbf{H}}$						4	5	6		${ }^{4} \mathrm{He}$
Li	${ }_{\substack{\text { Benmen }}}$										${ }^{11}$ B	${ }_{\text {coun }}^{12}$	${ }^{14} \mathbf{N}$	${ }^{16} \mathbf{0}$	${ }^{19} \mathrm{~F}$	${ }^{\text {20 }}$
Na	Mg										Al	${ }_{\text {seon }}^{\text {em }}$	'p	S	$\mathrm{Cl}^{\text {Clame }}$	${ }_{\text {Ar }}$
K	Ca		${ }^{5} \mathbf{V}$	${ }^{52}$	Mn	Fe^{6}	Co	Ni	${ }_{\text {coper }}^{64}$	${ }_{30}^{65} \mathbf{Z n}$	Ga	Ge	As	Se	Br	Kr
Rb	${ }_{\substack{\text { sin } \\ \text { sinum }}}^{\text {Sr }}$	${ }^{89}{ }^{89}{ }^{\text {Y }}$	Nb	Mo	Tc	Ru	Rh	Pd	Ag_{4}	Cd	In	${ }_{50} \mathbf{S n}$	Sb	Te	${ }^{\text {dane }}$	Xe
Cs	Ba	La* ${ }^{\text {a }}$ Hf	Ta	W	Re	Os	$\stackrel{92}{\text { lir }}$	Pt	Au	Hg	\int_{81}^{20404}		Bi	Po	At	Rn
${ }_{8}^{238}$			Db	${ }^{266}$	${ }^{264}$		${ }^{2688}$	Ds	$\mathrm{Rg}^{2 / 2}$	${ }^{235}$						
* 58-71 Lanthanum series $+90-103$ Actinium series $\mathbf{a}=$ relative atomic mass $\quad \begin{aligned} & \text { (approx) } \\ & \mathbf{x} \\ & \text { atomic symbol }\end{aligned}$ b = atomic number			Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
			Th	Pa	${ }_{\text {Unemi }}^{238}$	${ }_{\text {a }}^{\text {and }}$	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

