

	Cent	re Nu	mber
Ca	ndida	te Nu	mber
Са	ndida	te Nu	mber

General Certificate of Secondary Education 2017–2018

Science: Single Award

Unit 2 (Chemistry) Higher Tier

[GSS22] THURSDAY 8 NOVEMBER 2018, MORNING

TIME

1 hour 15 minutes.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number in the spaces provided at the top of this page.

Write your answers in the spaces provided in this question paper. Answer **all ten** questions.

INFORMATION FOR CANDIDATES

The total mark for this paper is 75.

Quality of written communication will be assessed in Questions 4(a) and 9.

Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question. A Data Leaflet, which includes a Periodic Table of the Elements, is included for your use.

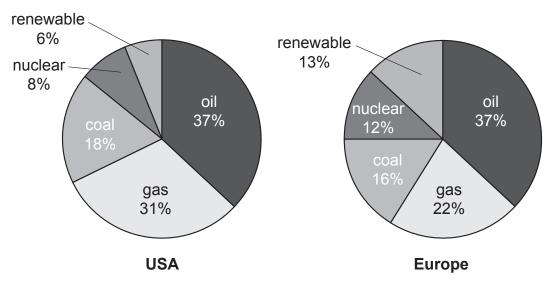
For Examiner's use only				
Question Number	Marks			
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				

Total	
Marks	

1 Coal, oil and gas are fossil fuels that are useful sources of energy.

Examiner Only

Marks Remark


(a) Complete the following sentences.

The main chemical element in coal is ______.

Natural gas (CH₄) contains the elements _____ and _____.

A molecule containing **only** the two elements found in CH₄ can be described as a _____. [3]

(b) The pie charts below show the percentage of different energy sources used in the USA and in Europe.

© "Primary Energy in The European Union and USA Compared", by Euan Mearns, 17 Oct 2016.

(i) Calculate the total percentage of coal, oil and gas used in **Europe**.

0/2	Γ1 ⁻
 /0	ַוי ן

[2]

(ii) State **one** similarity and **one** difference in the energy sources used in the USA and in Europe as shown in the pie charts above.

Similarity _			
-			
Difference			

2

(c) Propane can be used as a fuel. Complete the word equation below for the combustion of propane.

propage +		_		
proparie i	propane +	→	+	

Marks	Remark
[Tur	n ovei

Examiner Only

[2]

2	Thermochromic plastic is an example of a smart material, it changes
	colour as temperature changes. It is used in making baby bottles and
	forehead thermometers.

Examiner Only		
Marks	Remark	

(a)	What is meant by the term smart material?	
		[2]
		1-1

(b) The table below gives information about the colour changes of four thermochromic plastics (**P**, **Q**, **R** and **S**) as they are heated.

	Temperature at which colour changes/°C					
Plastic	Red	Green	Blue	Black		
Р	20	21	25	41		
Q	36	39	41	45		
R	25	70	100	105		
S	34	36	38	40		

A child's temperature is normally around 36°C, but when they are ill it can go as high as 38°C.

(i) Which plastic (P, Q, R or S) would be most suitable to make a forehead thermometer to show if a child is ill?

- [1	1	
	• -	4	J

The following instructions were given to make up a bottle of powdered milk for a baby.

- Examiner Only

 Marks Remark
- 1. Boil water in a kettle to 100°C to kill the bacteria that cause illness.
- 2. Fill the baby bottle with the boiled water.
- 3. Allow the water to cool, but not below 70°C.
- 4. Add the powdered milk to the bottle.
- 5. Leave to cool to room temperature.

© TEK Image / Science Photo Library

(ii)	Explain fully why the colour changes of plastic R would make it most suitable to manufacture baby bottles.			
	[2]			

3 (a) Magnesium burns in oxygen to form magnesium oxide as shown in the photograph below.

Examiner Only			
Marks	Remark		

Source: © Charles D Winters/Science Photo Library

ı	/:\	Describe the appearance	of magnagium	hofore it is hurnt
l	1)	Describe the appearance	oi illaqilesiulli	beiore it is buille.

[1]

(ii) Describe one observation that could be made during this reaction.

_____[1]

(iii) Describe the appearance of magnesium oxide after the reaction.

______[1]

(b) In this reaction oxygen is added to magnesium. What name is given to this **type** of reaction?

_____ [1]

6

(a)		
) Describe how you could carry out an investigation to determine if a sample of water was temporary hard water.	Examiner Marks I
	Your answer should include:	
	 the name of one metal ion that causes hard water how to make the investigation a fair test the result you would expect for temporary hard water 	
	In this question you will be assessed on your written communication skills including the use of specialist scientific terms.	3
(b)	Hard water can form undesirable deposits known as 'fur' in kettles Write a balanced symbol equation for the formation of 'fur'.	
(b)		
(b)		
(b)	Write a balanced symbol equation for the formation of 'fur'.	

5 The diagrams below show the Earth 150 million years ago and as it is in the present day.

Examiner Only			
Marks	Remark		

150 million years ago

© Claus Lunau / Science Photo Library

present day

© Mikkel Juul Jensen / Science Photo Library

The German geophysicist Alfred Wegener proposed a theory to explain the differences.

(a)	Nar	ne and describe Alfred Wegener's theory.	
			_ [3]
(b)	Sci	entists can find the age of the Earth by dating rocks.	
	(i)	What name is given to the modern method of dating rocks?	
			_ [1]
	(ii)	What age is the Earth according to this modern method?	
			[1]

BLANK PAGE

(Questions continue overleaf)

6 (a) Most mobile phones use lithium-ion batteries. The lithium is used with other elements in the positive electrode while graphite is used in the negative electrode.

Examiner Only			
Marks	Remark		

© TEK Image / Science Photo Library

(i)	Suggest one property that graphite must have to make it suitable
	to use as an electrode.

_____ [1]

(ii) Graphite is a form of carbon. An atom of carbon has 6 electrons. Draw a diagram below to show the electron arrangement of a carbon atom.

[1]

(b)		naking the positive electrode, some batteries use lithium cobalt le (LiCoO ₂) and others use lithium manganese oxide (LiMn ₂ O ₄)	Examiner Only Marks Remark
		erms of the numbers of elements present give one similarity a difference between these two compounds.	ind
	Sim	ilarity	
	Diffe	erence	
(c)	extr	battery casing is made from aluminium. Aluminium has to be acted from its ore but aluminium that has been used can be ea coled.	
	(i)	Name the method used to extract aluminium from its ore.	_ [1]
	(ii)	Electrodes are used during the extraction of aluminium. What name is given to the negative electrode?	_ [1]
	(iii)	Name the ore of aluminium.	_ [1]
	(iv)	Give one reason why recycling aluminium is important.	
			[1]

7 (a) The diagram below represents the four elements identified by the Greeks.

Examiner Only			
Marks	Remark		

© tassel78 / iStock / Thinkstock

(i) Name the four elements the Greeks used.

Α _____

F _____

w _____

E ______ [2]

(ii) Suggest one reason why these four Greek elements do **not** appear in the modern Periodic Table.

______[1]

(b)			and Dmitri Mer ne development				Examiner Only Marks Remar
	(i)	Name the t	heory put forwa	rd by John Nev	vlands.		
						_ [1]	
	(ii)	In what ord table?	er did Mendelee	ev put the elem	ents in his periodic		
						_ [1]	
	(iii)	Explain full periodic tak		ev did not have	the noble gases in h	าis	
						[2]	
						_ [~]	
(c)		own below a lodic Table.	re the elements	of the first two	Groups of the mode	rn	
			_]		
			Group 1	Group 2			
			Li	Be	-		
			Na	Mg			
			K	Са			
			Rb	Sr			
			Cs	Ва			
			Fr	Ra			
	(i)	What name Table?	e is given to the	elements in Gr	oup 1 of the Periodic		
						_ [1]	
	(ii)	Name the r	most reactive m	etal shown in th	e table above.		
						_ [1]	

(d)	Potassium	reacts w	vith oxygen	to form	potassium	oxide	(K_2O) .
` '			, ,				\

Examiner Only				
Marks	Remark			

(i) Balance the symbol equation below for the formation of potassium oxide.

$$K + O_2 \longrightarrow K_2O$$
 [1]

(ii) Complete the table below giving the total number of each named particle in potassium oxide (K_2O) .

You may find your Data Leaflet useful.

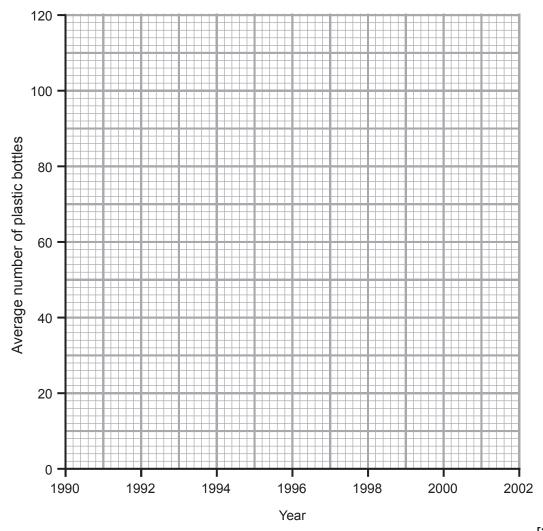
Particle	Number
electron	
proton	
neutron	

[3]

(iii)	Which	of the	particles	named	in the	table	has	the	lowest	mass?
()		J. 410	pa. 110100			CADIO		0	.0	

_____ [1]

BLANK PAGE


(Questions continue overleaf)

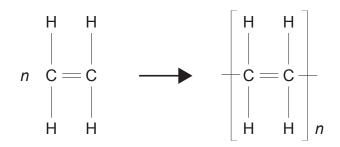
8

Year	Average number of plastic bottles
1990	22
1992	22
1994	24
1996	37
1998	58
2000	80
2002	120

 $^{@ \}textit{Plastic Pollution in the Pacific / http://plasticpollutioninthepacific.yolasite.com/stats.php}\\$

(i) On the grid below plot a line graph for this information.

(ii) Describe fully the trend shown by this information.


Examiner Only					
Marks Remark					

[2]

- **(b)** Plastics are made by a process called polymerisation.
 - (i) Name the polymer formed during the polymerisation of ethene.

______[1]

A student writes the following balanced symbol equation for the polymerisation of ethene.

(ii) The student has made a mistake in the equation. Circle the mistake and explain why it is incorrect.

[1]

9 Baking powder is a mixture of sodium hydrogencarbonate and tartaric acid. It is used in making cakes.

© adphoto81 / iStock / Thinkstock

When a cake is made **two** different chemical reactions take place. The sodium hydrogencarbonate is affected by heat and it also reacts with the tartaric acid.

Describe fully why sodium hydrogencarbonate is useful in making cakes.

Your answer should include:

- the type of reaction taking place when it is heated and the products formed
- the type of reaction taking place when it reacts with tartaric acid and the products formed.

skills including the use of specialist scientific terms.					

	Exami Marks	ner Only Remark
	- Marks	Remark
	-	
	_	
	-	
[6]	
		1

10 Thomas carried out an investigation in which he reacted different metals with solutions of their compounds. Some of his observations are shown below.

Examiner Only					
Marks	Remark				

Reactants	Observations
copper + iron(II) sulfate solution	no reaction
copper + silver nitrate solution	colourless solution turned blue, silver coloured solid formed
silver + copper(II) sulfate solution	no reaction
zinc + iron(II) sulfate solution	pale green solution turned colourless, grey solid formed
iron + copper(II) sulfate solution	blue solution turned pale green, pink/brown solid formed

(a)	What name is given to the type of reaction Thomas is investigating?						
(b)	Place the four metals in order of reactivity. Place the most reactive first.						
	most reactive						

[2]

least reactive

		omas also added magnesium to a solution of copper(II) sulfate a eaction took place.	INCI EX
	(i)	Give two observations he would expect for this reaction.	
		1	
		2	[2]
	(ii)	Name the two products formed in this reaction.	
		1	
		2	[2]
)		ggest why Thomas was advised by his teacher not to use sodiunis investigation.	m
∍)	If T	homas added iron to zinc sulfate solution what, if anything, wou	ld
•	he •	observe?	
•	he		. [1]
•	he (. [1]
·	he (
	he •		
	he (

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright holders may have been unsuccessful and CCEA will be happy to rectify any omissions of acknowledgement in future if notified.

SYMBOLS OF SELECTED IONS

Positive ions

Name	Symbol
Ammonium	NH ₄
Chromium(III)	Cr ³⁺
Copper(II)	Cu ²⁺
Iron(II)	Fe ²⁺
Iron(III)	Fe ³⁺
Lead(II)	Pb ²⁺
Silver	Ag ⁺
Zinc	Zn ²⁺

Negative ions

Symbol
CO ₃ ²⁻
Cr ₂ O ₇ ²⁻
CH₃COO¯
HCO ₃
OH⁻
HCOO ⁻
NO ₃
SO ₄ ²⁻
SO ₃ ²⁻

SOLUBILITY IN COLD WATER OF COMMON SALTS, HYDROXIDES AND OXIDES

Soluble	
All sodium, potassium and ammonium salts	
All nitrates	
Most chlorides, bromides and iodides EXCEPT silver and lead chlorides, bromides and iodides	
Most sulfates EXCEPT lead and barium sulfates Calcium sulfate is slightly soluble	

Insoluble									
Most carbonates EXCEPT sodium, potassium and ammonium carbonates									
Most hydroxides EXCEPT sodium, potassium and ammonium hydrox	ides								
Most oxides EXCEPT sodium, potassium and calcium oxides which	ch react with water								

DATA LEAFLET

For the use of candidates taking Science: Chemistry, Science: Double Award or Science: Single Award

Copies must be free from notes or additions of any kind. No other type of data booklet or information sheet is authorised for use in the examinations.

Contents								
Periodic Table of the Elements	2–3							
Symbols of Selected Ions								
Solubility of Common Salts	4							

gcse. SC1C1CC

chemistry double award single award

Rewarding Learning

THE PERIODIC TABLE OF ELEMENTS Group

1	2						Hydrogen 1					3	4	5	6	7	Helium 2
7 Li Lithium	9 Be Beryllium											B Boron	Carbon	14 N Nitrogen	16 Oxygen	19 Fluorine	Ne Neon
23 Na Sodium	4 24 Mg Magnesium 12											27 Aluminium 13	28 Si Silicon	31 Phosphorus 15	8 32 Sulfur 16	35.5 Chlorine 17	10 40 Ar Argon 18
39 K Potassium 19	40 Ca Calcium 20	45 Sc Scandium 21	48 Ti Titanium 22	Vanadium 23	52 Cr Chromium 24	Mn Manganese 25	Fe Iron 26	59 Co Cobalt 27	59 Ni Nickel 28	Cu Copper 29	65 Zn Zinc 30	70 Ga Gallium 31	73 Ge Germanium 32	75 As	79 Se Selenium 34	80 Br Bromine 35	84 Kr Krypton 36
Rb Rubidium 37	Sr Strontium 38	Y Y Yttrium 39	91 Zr Zirconium 40	Nb Niobium	96 Mo Molybdenum 42	99 TC Technetium 43		103 Rh Rhodium 45	106 Pd Palladium 46	108 Ag Silver	112 Cd Cadmium 48	115 In Indium 49	119 Sn 50 Tin	Sb Antimony 51	128 Te Tellurium 52	127 lodine 53	131 Xe Xenon 54
133 CS Caesium 55	Ba Barium 56	139 La* Lanthanum 57	178 Hf Hafnium 72	181 Ta Tantalum 73	184 W Tungsten 74	186 Re Rhenium 75	190 OS Osmium 76	192 Iridium 77	195 Pt Platinum 78	197 Au Gold 79	Hg Mercury 80	Thallium 81	207 Pb Lead 82	Bismuth	Polonium 84	210 At Astatine 85	Radon Radon
Francium 87	Radium 88	Actinium 89	Rutherfordium	Db Dubnium 105	Seaborgium	Bh Bohrium 107	265 HS Hassium 108	266 Mt Meitnerium 109	DS Darmstadtium	Rg Roentgenium 111	285 Cn Copernicium 112						

* 58 – 71 Lanthanum series †90 – 103 Actinium series

a = relative atomic mass b X (approx)

x = atomic symbol b = atomic number

	140	141	144	147	150	152	157	159	162	165	167	169	173	175
	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dv	Но	Er	Tm	Yb	Lu
	Cerium 58	Praseodymium 59		Promethium		Europium	Gadolinium	Terbium 65	Dysprosium 66	Holmium	Erbium 68	Thulium 69	Ytterbium 70	Lutetium 71
}	232	231	238		242	243	247	245	251	254	253	256	254	257
	Th	Pa	U	Np	Pu	Am	Cm	Bk	Ct	ES	Fm	Md	No	Lr
	Thorium 90	Protactinium 91		Neptunium 93		Americium 95	Curium 96	Berkelium 97	1	Einsteinium 99	Fermium 100	Mendelevium 101	Nobelium 102	Lawrencium 103