RECOGNISING ACHIEVEMENT

GCSE

Methods in Mathematics (Pilot)

Mark Scheme for November 2013

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

Annotations used in the detailed Mark Scheme.

Annotation	Meaning
\checkmark	Correct
\mathbf{x}	Incorrect
BOD	Benefit of doubt
FT	Follow through
ISW	Ignore subsequent working (after correct answer obtained), provided method has been completed
M0	Method mark awarded 0
M1	Method mark awarded 1
M2	Method mark awarded 2
A1	Accuracy mark awarded 1
B1	Independent mark awarded 1
B2	Independent mark awarded 2
MR	Misread
SC	Special case
\wedge	Omission sign

These should be used whenever appropriate during your marking.
The M, A, B etc annotations must be used on your standardisation scripts for responses that are not awarded either 0 or full marks.
It is vital that you annotate these scripts to show how the marks have been awarded.
It is not mandatory to use annotations for any other marking, though you may wish to use them in some circumstances.

Subject-Specific Marking Instructions

1. \mathbf{M} marks are for using a correct method and are not lost for purely numerical errors.

A marks are for an accurate answer and depend on preceding M (method) marks. Therefore M0 A1 cannot be awarded.
\mathbf{B} marks are independent of \mathbf{M} (method) marks and are for a correct final answer, a partially correct answer, or a correct intermediate stage.
SC marks are for special cases that are worthy of some credit.
2. Unless the answer and marks columns of the mark scheme specify \mathbf{M} and \mathbf{A} marks etc, or the mark scheme is 'banded', then if the correct answer is clearly given and is not from wrong working full marks should be awarded.

Do not award the marks if the answer was obtained from an incorrect method, ie incorrect working is seen and the correct answer clearly follows from it.
3. Where follow through (FT) is indicated in the mark scheme, marks can be awarded where the candidate's work follows correctly from a previous answer whether or not it was correct.

Figures or expressions that are being followed through are sometimes encompassed by single quotation marks after the word their for clarity, eg FT $180 \times\left(\right.$ their ' 37 ' +16), or FT $300-\sqrt{ }\left(\right.$ their $\left.{ }^{\prime} 5^{2}+7^{2 \prime}\right)$. Answers to part questions which are being followed through are indicated by eg FT $3 \times$ their (a).

For questions with FT available you must ensure that you refer back to the relevant previous answer. You may find it easier to mark these questions candidate by candidate rather than question by question.
4. Where dependent (dep) marks are indicated in the mark scheme, you must check that the candidate has met all the criteria specified for the mark to be awarded.
5. The following abbreviations are commonly found in GCSE Mathematics mark schemes.

- cao means correct answer only.
- figs 237, for example, means any answer with only these digits. You should ignore leading or trailing zeros and any decimal point eg $237000,2.37,2.370,0.00237$ would be acceptable but 23070 or 2374 would not.
isw means ignore subsequent working (after correct answer obtained).
- nfww means not from wrong working.
- oe means or equivalent.
- rot means rounded or truncated.
- \quad seen means that you should award the mark if that number/expression is seen anywhere in the answer space, including the answer line, even if it is not in the method leading to the final answer.
- soi means seen or implied.

6. Make no deductions for wrong work after an acceptable answer unless the mark scheme says otherwise, indicated for example by the instruction 'mark final answer'.
7. As a general principle, if two or more methods are offered, mark only the method that leads to the answer on the answer line. If two (or more) answers are offered, mark the poorer (poorest).
8. When the data of a question is consistently misread in such a way as not to alter the nature or difficulty of the question, please follow the candidate's work and allow follow through for \mathbf{A} and \mathbf{B} marks. Deduct 1 mark from any \mathbf{A} or \mathbf{B} marks earned and record this by using the MR annotation. M marks are not deducted for misreads.
9. Unless the question asks for an answer to a specific degree of accuracy, always mark at the greatest number of significant figures even if this is rounded or truncated on the answer line. For example, an answer in the mark scheme is 15.75 , which is seen in the working. The candidate then rounds or truncates this to $15.8,15$ or 16 on the answer line. Allow full marks for the 15.75.
10. If the correct answer is seen in the body and the answer given in the answer space is a clear transcription error allow full marks unless the mark scheme says 'mark final answer' or 'cao'. Place the annotation \checkmark next to the correct answer.

If the answer space is blank but the correct answer is seen in the body allow full marks. Place the annotation \checkmark next to the correct answer.

If the correct answer is seen in the working but a completely different answer is seen in the answer space, then accuracy marks for the answer are lost. Method marks would still be awarded. Use the M0, M1, M2 annotations as appropriate and place the annotation \times next to the wrong answer.
11. Ranges of answers given in the mark scheme are always inclusive.
12. For methods not provided for in the mark scheme give as far as possible equivalent marks for equivalent work. If in doubt, consult your Team Leader.
13. Anything in the mark scheme which is in square brackets [...] is not required for the mark to be earned, but if present it must be correct.

Question		Answer	Marks	Part marks and guidance	
1	(a)	Churchill Arms 95 Royal 100	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	If $\mathbf{0}$ scored, allow B1 for Churchill Arms and Royal correctly identified or evidence of any 2 from G 99, R 100, CA 95.	
	(b)	Royal 200 Churchill Arms 214	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	If $\mathbf{0}$ scored, allow $\mathbf{B 1}$ for Royal and Churchill Arms correctly identified from 2 nights or evidence of any 2 from G 206, R 200, CA 214	
2	(a)	$\begin{aligned} & {[a=] 62} \\ & {[b=] 118} \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	M1 for 180-54-64 M1 for $54+64$ or 180 - their (a) A1 for 118 or FT 180 - their (a)	64 and 116 scores 02
	(b)	[c=] 121	2	$\begin{aligned} & \text { M1 for } \angle A B C=59 \\ & \text { or } c=180-59 \end{aligned}$	
3	(a)	2184	1		
	(b)	9.2	1		
	(c)	1.728	1		
4	(a)	2 rectangles shaded	1		
	(b)	$£ 42$	1		
	(c)	48	2	M1 for $\frac{1}{4}$ used or $\times 4$ implied	Allow M1 for answer 3

Question			Answer	Marks	Part marks and guidance	
5	(a)		$(-4,2)(0,5)(4,2)$ joined	2	M1 for 2 points correct	
	(b)		Isosceles	1		
	(c)		(2, 3.5)	2	M1 for either coordinate correct FT their BC for 1 or 2 marks	
	(d)		12	2	M1 for rectangle 24 or 8×3 FT their triangle for 1 or 2 marks	
6	(a)	(i)	7	1		
		(ii)	16	1		
	(b)	(i)	18	1		
		(ii)	20	2	M1 for 25	
7	(a)	(i)	229	1		
		(ii)	$0.5 \text { or } \frac{1}{2} \mathbf{o e}$	1		
		(iii)	2700	1		
	(b)	(i)	0.15	1		
		(ii)	Two equivalent fractions eg $\frac{6}{40} \quad \frac{30}{200}$	2	B1 for each	
8	(a)		Tessellation using minimum 8 shapes	2	M1 for 4 shapes correct or 8 shapes with no gaps	
	(b)		10	1		

Question			Answer	Marks	Part marks and guidance	
	(c)		B correct	3	M2 for enlargement SF2 attempted or 6 lengths correct or M1 for shape with perimeter 20 cm	
	(d)		Area A 4[$\left.\mathrm{cm}^{2}\right]$ Area B $16\left[\mathrm{~cm}^{2}\right]$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	Allow FT of their B if $B \neq 4 \times A$ stated	
9	(a)	(i)	$\begin{array}{ll} \hline 8+16=24 & 2 \times 12=24 \\ 24+32=56 & 2 \times 28=56 \end{array}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	If 0 scored, M1 for 8+16=24 and $24+32=56$ or double $12=24$ and double 28=56	
		(ii)	Any 5 consecutive odd numbers Statement eg $1+9=10 \quad 2 \times 5=10$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \end{aligned}$		
	(b)	(i)	$n+2 n+4 n+6 n+8$	2	M1 for $n+2$	
		(ii)	Sum $n+n+8$ Double $2(n+4)$ or halving $2 n+8$ Concluding statement	$\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & n+n+8=2(n+4) \text { scores } 110 \\ & n+n+8=2 n+8 \\ & 2(n+4)=2 n+8 \text { scores } 111 \end{aligned}$ FT for 3 marks from algebraic expressions in part (i) using consecutive numbers FT for 1 mark from other algebraic expressions in (i)	eg $n, n+1, n+2, n+3, n+4$ then part (ii) $n+n+4[=2 n+4]$ $\begin{aligned} & 2(n+2) \\ & =2 n+4 \end{aligned}$ Scores 111 Eg (i) $n n^{3} n^{5} n^{7} n^{9}$ then (ii) $n+n^{9}=n^{10} n^{10} \div 2=n^{5}$ scores 100

Question			Answer	Marks	Part marks and guidance	
10	(a)		91625	2	M1 for any two correct	Allow 16, 25, 36 for M1
	(b)		Correct possible expression with at least 5 terms of sequence eg $3 n-2$ and 1, 4, 7, 10, 13	3	M2 for their sequence with rule described eg 145914 and eg $1+4=5$ or eg 1471013 with ' +3 ' or M1 for 3 extra terms of acceptable sequence	Condone $n+3$ for ' +3 '
11	(a)		(10, 1200) and (50,6000) plotted and joined	2	M1 for 2 points plotted or straight line through $(50,6000)$	Line through points implies plotting
	(b)		120x	1	Allow eg 2x60xx	
	(c)		125	2	M1 for 15000 substituted in formula or readings from eg $y=7000$ and $y=8000$. A1 for 120 to 130 if fully supported by readings from graph	
12	(a)	*	Explanation eg $\frac{1}{4}=0.25, \frac{1}{2}=0.5, \frac{1}{3}=0.33$ closer to $\frac{1}{4}$	2	For 2 marks accept fractions marked on graduated line or equivalent fractions used. 1 for $\frac{1}{4}=0.25$ and $\frac{1}{2}=0.5$ or from percentages or simple use of diagrams or $3 / 8$ is the middle without any explanation	

Question		Answer	Marks	Part marks and guidance	
C	(b)	$\frac{3}{16}$	3	M2 for equivalent fraction to $\frac{3}{16}$ or $\frac{1}{2}\left(\frac{1}{8}+\frac{1}{4}\right)$ or $\frac{1}{8}+\frac{1}{2}\left(\frac{1}{4}-\frac{1}{8}\right)$ or $\frac{1.5}{8}$ or 0.1875 OR M1 for changing to same denominator or $\left(\frac{1}{4} \pm \frac{1}{8}\right)$ or $(0.125 \pm 0.25) / 2$ or $\frac{1}{16}$ oe	
13	(a)	50 [\%]	1		
C	(b)	$\frac{1}{6}$	2	M1 for equivalent fraction (not cancelled)	Accept eg $\frac{2}{4+2+6}$
C	(c)	$2: 1: 3$	2	M1 for 4: 2: 6 oe	Condone fractions, decimals and included consistent units for M1
$\begin{aligned} & 14 \\ & c \end{aligned}$	(a)	3.6	3	M2 for $\sqrt{ }\left(3.9^{2}-1.5^{2}\right)$ OR M1 for 3.9 $\mathbf{9}^{2}-1.5^{2}$ or $a^{2}+1.5^{2}=3.9^{2}$ OR SC1 for any Pythagoras statement	eg $3.9^{2}+1.5^{2}$ (probably soi by 17.46 or 4.1785 ...or 4.18)

Question			Answer	Marks	Part marks and guidance
C	(b)		21.6	3	FT from their (a) for full marks FT from 4.2 will give 25.07 to OR 25.2 M2 their $(\mathbf{a}) \times 0.5 \times 1.5 \times 8$ OR M1 their $(\mathbf{a}) \times 0.5 \times 1.5$ or their area of end section $\times 8$ NB only accept '2D' $\times 8$
$\begin{aligned} & 15 \\ & c \end{aligned}$		*	$p+q=270\left[^{\circ}\right.$] with complete, correct reasoning.	4	Must see all of - [Interior] angles [of pentagon] add up to 540° oe - $\quad \angle E F B=138^{\circ}$ clearly identified (condone F =) - Interior (or allied) angles or alt angles and angles on straight line (allow clear use of 180 to indicate straight line). $p+q=540-90-42-138=270 \text { oe correct method }=270$ NB use of $\angle C B F+\angle E F B=180^{\circ}$ with interior angles implies $2^{\text {nd }}$ and $3^{\text {rd }}$ aspects OR 3 for $p+q=270$ with three out of four aspects covered or completely correct reasoning (all four aspects) but with one error leading to wrong $p+q$. OR 2 for any two out of the four aspects. Allow $p+q=270$ (eg $p=132$ and $q=138$) with 90,138 and 42 as evidence for angles add up to 540. OR 1 for one aspect or relevant angle (eg <ABF = 138) or 270 without working For all of the above, aspects may be seen on the diagram. Do not condone supplementary as a reason

Question		Answer	Marks	Part marks and guidance	
$\begin{aligned} & 16 \\ & c \end{aligned}$		$\begin{aligned} & 68 \times 0.77 \\ & 68 \times 1.05 \\ & 68 \times 1.23 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$		Do not give a mark for any statement on the left which is joined to more than one statement on the right
$\begin{aligned} & 17 \\ & c \end{aligned}$	(a)	[$x=$] 3	3	M1 for $2 x-1=5$ or $6 x-3$ [= 15] AND M1 for collecting their x and their number terms on opposite sides of equation eg $2 x=6$ or $6 x=18$ M1 for correct FT from $k x=n$	Condone correct embedded answer $\begin{aligned} & 6 x-1=15 \text { then } \\ & 6 x=16 \text { then } \\ & x=2 \frac{2}{3} \text { scores M0, M1, M1 } \\ & \text { (condone } 2.66[\ldots] \text { or } 8 / 3 \text { but not } \\ & 16 / 6 \text {) } \end{aligned}$
C	(b)	$x>1.2$ oe final answer	2	M1 for $5 x>6$ or $-5 x<-6$ OR SC1 for ($x=$) 1.2 or $x<1.2$ oe or $x>2.4$ oe	Condone 6/5 for 2 marks

APPENDIX

Exemplar responses
Question 12a

Response	Mark
$\frac{1}{3}=0.3 \frac{1}{4}=0.25 \frac{1}{2}=0.5$. Halfway between 0.25 and 0.5 is 0.375	$\mathbf{2}$
$\frac{1}{2}(0.5), \frac{1}{4}(0.25), \frac{1}{3}(0 . \dot{3})$ is not exactly half way between 0.5 and 0.25	$\mathbf{2 ~ b o d}$
Because $\frac{1}{4}$ is 0.25 and $\frac{1}{2}$ is 0.5 which means 0.3 isn't half way.	$\mathbf{1}$

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU

A
PART OF THE CAMBRIDGE ASSESSMENT

Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

