

Tuesday 8 November 2016 – Morning

GCSE METHODS IN MATHEMATICS

B391/02 Methods in Mathematics 1 (Higher Tier)

Candidates answer on the Question Paper.

OCR supplied materials: None

Other materials required:

Geometrical instruments Tracing paper (optional)

Duration: 1 hour 15 minutes

Candidate forename		Candidate surname	
-----------------------	--	----------------------	--

Centre number						Candidate number				
---------------	--	--	--	--	--	------------------	--	--	--	--

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the boxes above. Please write clearly and in capital letters.
- Use black ink. HB pencil may be used for graphs and diagrams only.
- Answer all the questions.
- Read each question carefully. Make sure you know what you have to do before starting your answer.
- Your answers should be supported with appropriate working. Marks may be given for a correct method even if the answer is incorrect.
- Write your answer to each question in the space provided. Additional paper may be used if necessary but you must clearly show your candidate number, centre number and question number(s).
- Do not write in the bar codes.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- Quality of written communication will be assessed in questions marked with an asterisk (*).
- The total number of marks for this paper is **60**.
- This document consists of **12** pages. Any blank pages are indicated.

OCR is an exempt Charity

2

Formulae Sheet: Higher Tier

In any triangle ABC Sine rule $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ Cosine rule $a^2 = b^2 + c^2 - 2bc \cos A$ Area of triangle $= \frac{1}{2}ab \sin C$

Volume of prism = (area of cross-section) × length

Volume of sphere = $\frac{4}{3}\pi r^3$ Surface area of sphere = $4\pi r^2$

Volume of cone = $\frac{1}{3}\pi r^2 h$ Curved surface area of cone = $\pi r l$

The Quadratic Equation

The solutions of $ax^2 + bx + c = 0$, where $a \neq 0$, are given by

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

3

Answer all the questions.

- 1 (a) Work out. (i) 0.0378×1000000 (a)(i)[1] (ii) 53.67 ÷ 10⁵ (ii)[1] (iii) $6 + 3 \times 5 - 2$ (iii)[1] (b) Put brackets in this statement to make it correct. $5 + 3 \times 2 - 6 - 3 = 13$ [1] Find the value of *P* in each of the following when a = 3, b = -7 and $c = 1\frac{1}{2}$. 2 (a) $P = a + 2b^2$ (a)[2]
 - $(b) \quad P = \frac{a+b}{2} \times c$

(b)[2]

Turn over

Janet is playing a game where she tosses two fair cubical dice. The sides on the red dice are numbered 1 to 6. The sides on the blue dice are numbered 3 to 8.

Janet's score is the positive difference between the numbers showing on the two dice.

(a) Complete the grid showing Janet's possible scores.

		Nu	Imber	on red	d dice		
		1	2	3	4	5	6
e	3			0		2	
ue dic	4						
ld no .	5			2			
umber	6						0
Ž	7						
	8						

(b) Find the probability that Janet's score is

(i) 2,

(b)(i)[2]

(ii) less than 2.

(ii)[1]

[2]

- $\mathscr{E} = \{ \text{letters in the word NUMERICAL} \}$ 4
 - P = {letters in the word CLEAR} Q = {letters in the word REMAIN}

 - (a) Complete the Venn diagram to show all the elements of the set \mathscr{E} .

(b) List the members of $P \cap Q$.

(b)[1]

(c) Find n ($P' \cap Q'$).

(c)[1]

[3]

6

6* Matt is decorating a room.

The room is $5 \text{ m} \log$, 3.8 m wide and 3 m high. The walls and ceiling are rectangular. He needs to paint the four walls and the ceiling. The total area of the door and windows is 8.2 m^2 and they do not need painting.

Paint is sold in 5 litre tins and costs 20 per tin. Each litre covers 12 m^2 in one coat. Brushes and cleaning materials cost him a total of 18.

Find the total cost of decorating the room with two coats of paint.

.....[5]

7 The length of a rectangle is 3 cm more than the width. The perimeter of the rectangle is 28 cm.

Find the length and width of the rectangle.

length cm, width cm [3]

8 When they are written as products of their prime factors, $500 = 2^2 \times 5^3$ and $N = 2^r \times 5^s \times 7^t$.

The highest common factor of 500 and *N* is $2^2 \times 5^2$. The lowest common multiple of 500 and *N* is $2^3 \times 5^3 \times 7$.

Find *r*, *s* and *t*.

<i>r</i> =		
s =		
<i>t</i> =	[3]	

(a)[3]

10 (a) (i) Write 0.00000568 in standard form.

(ii) Write 5.32×10^7 as an ordinary number.

(b) You are given that $7.6 \times 10^{-12} = f \times 10^{-8}$. Find the value of f.

(c) A population of bacteria doubles every 10 days. On a certain day the population is 5×10^7 .

Find the population 40 days later. Give your answer in standard form.

(c)[2]

Turn over

(b)[2]

(a)(i)[1]			
----------	--	---	--	--	--

(ii)[1]

(b) Factorise completely.

4(3-x) = 2(x+1)

9

(a) Solve.

 $4x^2y^3 - 6x^3y^2$

The diagram shows a cube, ABCDEFGH, of side 6 units. All of the sides are parallel to one of the coordinate axes. A is the point (2, 0, -3).

Find the coordinates of these points.

(a) B

11

(a) (.....) [1]

(b) G

(b) (.....) [2]

12 AB is a tangent at C to the circle centre O.

(a) angle BCD,

(a)[2]

(b) angle CDE.

(b)[2]

Question 13 is printed on the next page.

- **13** A bag contains some balls. All of them are either red or blue. The probability that a ball picked at random from the bag is red is *p* where 0 .Muna takes a ball from the bag at random, records the colour, and replaces it.She then picks another ball at random from the bag.
 - (a) Complete the tree diagram to show the probabilities of the colours of Muna's two picks.

[2]

(b) The probability of getting a red and blue ball in any order is the same as the probability of getting 2 blue balls.

	END OF QUESTION PAPER	
		. [1]
(ii)	Hence or otherwise show that $p = \frac{1}{3}$.	
		. [3]
(-)		

© OCR 2016 Contact the Copyright Team, First Floor, 9 Hills Road, Cambridge CB2 1GE.

(i) Form an equation in p

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.