

Mark Scheme (Results)

January 2014

International GCSE Chemistry (4CH0) Paper 1C Science Double Award (4SC0) Paper 1C

Edexcel Level 1/Level 2 Certificates Chemistry (KCHO) Paper 1C Science (Double Award) (KSCO) Paper 1C

## **Edexcel and BTEC Qualifications**

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <a href="https://www.edexcel.com">www.edexcel.com</a> or <a href="https://www.btec.co.uk">www.btec.co.uk</a>. Alternatively, you can get in touch with us using the details on our contact us page at <a href="https://www.edexcel.com/contactus">www.edexcel.com/contactus</a>.

## Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: <a href="https://www.pearson.com/uk">www.pearson.com/uk</a>

January 2014
Publications Code UG037642
All the material in this publication is copyright
© Pearson Education Ltd 2014

## **General Marking Guidance**

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

| Question number | Answer       | Accept | Reject | Marks |
|-----------------|--------------|--------|--------|-------|
| 1               | M1 dissolve  |        |        | 1     |
|                 | M2 solution  |        |        | 1     |
|                 | M3 evaporate |        |        | 1     |
|                 | M4 crystals  |        |        | 1     |
|                 | M5 filter    |        |        | 1     |
|                 |              |        | Total  | 5     |

| Question number | Answer                                                                                                                                                                                                                                    | Accept                               | Reject                                           | Marks |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------------------------|-------|
| 2 (a)           | X boiling                                                                                                                                                                                                                                 |                                      |                                                  | 1     |
|                 | Y condensing                                                                                                                                                                                                                              |                                      |                                                  | 1     |
|                 | Z freezing                                                                                                                                                                                                                                |                                      |                                                  | 1     |
| (b)             | C The particles move freely.                                                                                                                                                                                                              |                                      |                                                  | 1     |
| (c) (i)         | thermometer                                                                                                                                                                                                                               |                                      |                                                  | 1     |
| (ii             | it/water boils at 100°C                                                                                                                                                                                                                   | water does not get hotter than 100°C |                                                  | 1     |
|                 | OR                                                                                                                                                                                                                                        | than 100 0                           |                                                  |       |
|                 | it/water boils below the melting point of (solid) Q / 140°C / boils before Q melts IGNORE evaporates                                                                                                                                      | reverse argument                     |                                                  |       |
| (iii            | (throughout)                                                                                                                                                                                                                              | OWTTE                                | words that imply constant temperature, eg steady | 1     |
|                 | OR                                                                                                                                                                                                                                        |                                      |                                                  |       |
|                 | to avoid the <u>bottom</u> of the liquid from overheating/the <u>bottom</u> getting hotter than the rest of the liquid/to evenly distribute the heat/to avoid hot spots <b>IGNORE</b> references to increasing movement, etc of particles |                                      |                                                  |       |
|                 |                                                                                                                                                                                                                                           |                                      | Total                                            | 7     |

| Question<br>number | Expected Answer                        | Accept                              | Reject        | Marks |
|--------------------|----------------------------------------|-------------------------------------|---------------|-------|
| 3 (a)(i)           | nitrogen <u>and</u> oxygen             |                                     |               | 1     |
|                    | IGNORE formulae whether right or wrong |                                     |               |       |
| (ii)               | argon                                  |                                     |               | 1     |
|                    | IGNORE formula whether right or wrong  |                                     |               |       |
| (b)                | Any one from:                          |                                     |               | 1     |
| (c)                | Any one from:                          | nitrogen oxide<br>a correct formula | any other gas | 1     |

|         |                                                                                                                |                                     | Total                     | 9 |
|---------|----------------------------------------------------------------------------------------------------------------|-------------------------------------|---------------------------|---|
| (e)     | (whether it/the height / the measurement is) the same as before  IGNORE references to iron had stopped rusting | no change                           |                           | 1 |
|         | 79 with no working scores 0                                                                                    |                                     |                           |   |
|         | $\frac{63}{80} \times 100 = 79 \text{ scores } 1$                                                              |                                     |                           |   |
|         | 78.75/78.8/78.7 with no working scores 1                                                                       |                                     |                           |   |
|         | 21 with no working scores 1                                                                                    |                                     |                           |   |
|         | OR M1 × 100 correctly evaluated                                                                                |                                     |                           |   |
|         | <b>M2</b> percentage = $(\frac{17}{80} \times 100) / 21$                                                       | 21.25 / 21.3/21.2                   |                           | 1 |
| (ii)    | <b>M1</b> volume of oxygen = $80 - 63 / 17 \text{ (cm}^3\text{)}$                                              | WZ Salanood                         |                           | 1 |
|         | IVIZ 1113                                                                                                      | M1 all formulae correct M2 balanced |                           |   |
|         | M1 lhs<br>M2 rhs                                                                                               | correct chemical equation           |                           | _ |
| (d) (i) | iron + oxygen (+ water) → (hydrated) iron (III) oxide                                                          | ferric oxide/iron oxide             | any other oxidation state | 2 |

| Question number | Answer                                                                                                                                                                                                        | Accept                                          | Reject | Marks |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|--------|-------|
| 4 (a) (i)       | the (orange) colouring dissolves in ethanol / does not dissolve in water OR the (orange) colouring is more soluble in ethanol (than water) OR ethanol is a better solvent (than water) IGNORE petals dissolve |                                                 |        | 1     |
| (ii)            | water bath / electric heater / isomantle                                                                                                                                                                      | description of<br>water bath<br>hot water/steam |        | 1     |
| (iii)           | filter / decant / pour off the liquid                                                                                                                                                                         | use a sieve                                     |        | 1     |
| (b)             | M1 2 spots/dots/circles drawn at <u>different</u> heights above the original orange spot <u>and below</u> the solvent front                                                                                   | one spot level with the orange spot             |        | 1     |
|                 | M2 one spot labelled red AND one spot labelled yellow                                                                                                                                                         |                                                 |        | 1     |
|                 | orange colouring solvent front start end                                                                                                                                                                      |                                                 |        |       |
|                 |                                                                                                                                                                                                               |                                                 | Total  | 5     |

| Question number | Answer                                                                                            | Accept                                             | Reject                   | Marks |
|-----------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------|--------------------------|-------|
| 5 (a)           | A - (tap) funnel                                                                                  | burette                                            |                          | 1     |
|                 | B - (conical) flask                                                                               |                                                    |                          | 1     |
|                 | C - (gas) jar                                                                                     | measuring cylinder                                 |                          | 1     |
| (b)             | M1 (limewater) goes milky/chalky/cloudy OR (white) precipitate/solid/suspension (formed)          | ppt                                                | colours other than white | 1     |
|                 | <ul><li>M2 (mixture) goes clear OWTTE (eg cloudiness disappears)</li><li>IGNORE bubbles</li></ul> | solid dissolves OWTTE colourless solution (formed) |                          | 1     |
| (c)             | more dense than air/oxygen                                                                        | poor conductor of electricity                      | just heavier than air    | 1     |
| (d)             | C weakly acidic                                                                                   |                                                    |                          | 1     |
|                 |                                                                                                   |                                                    | Total                    | 7     |

| Question number | Answer                                                                                                                                                                                                                                                            | Accept                                                                      | Reject                                     | Mark<br>s |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------|-----------|
| 6 (a)           | <b>M1</b> C <sub>6</sub> H <sub>14</sub>                                                                                                                                                                                                                          |                                                                             |                                            | 1         |
|                 | <b>M2</b> 58                                                                                                                                                                                                                                                      |                                                                             |                                            | 1         |
|                 | M3 any value in the range 25 to 45                                                                                                                                                                                                                                |                                                                             |                                            | 1         |
| (b)             | boiling point/it <u>increases</u> as $M_r$ <u>increases</u>                                                                                                                                                                                                       | reverse argument positive correlation as one increases the other increases  | directly proportional                      | 1         |
| (c)             | different general formulae / OR (general) formula of ethene is not C <sub>n</sub> H <sub>2n+2</sub> / (general) formula of ethane is not C <sub>n</sub> H <sub>2n</sub> OR  use of/ mention of displayed formulae to show/indicate double (C to C) bond in ethane | same number of carbon<br>atoms but different<br>number of hydrogen<br>atoms | just different number of<br>hydrogen atoms | 1         |
| (d) (i)         | M1 H H H H H H H H H H H H H H H H H H H                                                                                                                                                                                                                          |                                                                             |                                            | 1         |
| (ii)            | penailse one missing H or one missing bond once only accept answers in either order  (structural) isomer(s)                                                                                                                                                       | isomerism                                                                   |                                            | 1         |

| 6 (e) (i) | $C_2H_6 + Br_2 \rightarrow C_2H_5Br + HBr$ | further substituted formula structural or displayed formulae |                  | 2  |
|-----------|--------------------------------------------|--------------------------------------------------------------|------------------|----|
|           | $\mathbf{M1} - C_2H_5Br$                   | . 3                                                          |                  |    |
|           | M2 – rest of equation correct              |                                                              |                  |    |
|           | M2 dep on M1                               |                                                              |                  |    |
|           | IGNORE state symbols                       |                                                              |                  |    |
| (ii)      | substitution                               | bromination/halogenation                                     |                  | 1  |
| (iii)     | ultraviolet/uv (radiation)                 | uv light<br>sunlight                                         | light on its own | 1  |
|           |                                            |                                                              | Total            | 12 |

| Question number | Answer                                                                                                                                                                     | Accept                                                            | Reject               | Mark<br>s |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|----------------------|-----------|
| 7 (a)           | releases thermal energy                                                                                                                                                    | releases heat (energy)                                            | just releases energy | 1         |
|                 |                                                                                                                                                                            | produces an increase in temperature                               |                      |           |
| (b)             | D ***                                                                                                                                                                      |                                                                   |                      | 1         |
| (c)             | A X X Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z                                                                                                                                    |                                                                   |                      | 1         |
| (d)             | M1 (consists of) positive <u>AND</u> negative/oppositely charged ions/Mg <sup>2+</sup> <u>AND</u> O <sup>2-</sup> (ions)  I GNORE references to loss and gain of electrons |                                                                   |                      | 4         |
|                 | <b>M2</b> (strong) attraction between (positive <u>AND</u> negative/ oppositely charged) ions/Mg <sup>2+</sup> <u>AND</u> O <sup>2-</sup> (ions)                           | (strong) ionic bonding/(strong) ionic bonds                       |                      |           |
|                 | M3 many ions (present in lattice)/giant structure/giant lattice                                                                                                            |                                                                   |                      |           |
|                 | M4 large amount of energy required (to separate the ions/overcome the attraction between the ions)                                                                         | break the ionic bonding/bonds                                     |                      |           |
|                 | If mention of covalent bonds/metallic bonds/intermolecular forces only <b>M4</b> can be awarded                                                                            |                                                                   |                      |           |
| 7 (e)           | M1 (name) magnesium chloride                                                                                                                                               |                                                                   |                      | 1         |
|                 | M2 (formula) MgCl <sub>2</sub>                                                                                                                                             | accept a correct formula as a                                     |                      | 1         |
|                 | Penalise inappropriate use of upper or lower case letters or numbers in the wrong place                                                                                    | <u>product</u> in an equation whether the equation correct or not |                      | ı         |
|                 |                                                                                                                                                                            |                                                                   | Total                | 9         |

| Question number    | Answer                                                                                                      | Accept                                                                              | Reject                                   | Marks |
|--------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|------------------------------------------|-------|
| 8 (a)              | M1 electronic configuration / 2.1, 2.8.1, 2.8.8.1                                                           | electronic structure / arrangement of electrons                                     |                                          | 1     |
|                    | M2 same number of electrons in outer shell / one electron in outer shell                                    |                                                                                     |                                          | 1     |
|                    | OR                                                                                                          |                                                                                     |                                          |       |
|                    | the number of electrons in the outer shell determines the chemical properties                               |                                                                                     |                                          |       |
| (b)                | melting point / melting temperature                                                                         |                                                                                     |                                          | 1     |
| (c) (i) (ii) (iii) | burns with a pop/squeak (when mixed with air and ignited)  s I aq g                                         | use burning/lit spill / flame to see if pop/squeak splint for spill capital letters | glowing spill<br>just 'squeaky pop test' | 1     |
| ()                 | M1 turns blue I GNORE purple                                                                                |                                                                                     |                                          | 1     |
|                    | M2 alkaline solution formed/alkali formed/hydroxide ions formed/LiOH is an alkali/LiOH forms hydroxide ions | OH <sup>-</sup> for hydroxide ions<br>pH is greater than 7                          |                                          |       |
|                    | I GNORE references to lithium hydroxide is a metal hydroxide                                                |                                                                                     |                                          |       |
|                    | M2 dep on M1 correct or missing                                                                             |                                                                                     |                                          |       |

|           |                                                                                   |                                                               | Total | 14 |
|-----------|-----------------------------------------------------------------------------------|---------------------------------------------------------------|-------|----|
| (ii)      | 2 (1) (1)                                                                         | multiples and halves                                          |       | 1  |
|           | M2 dep on M1                                                                      |                                                               |       |    |
|           | M1 formulae M2 balancing                                                          |                                                               |       |    |
|           | IGNORE state symbols                                                              |                                                               |       |    |
| 8 (e) (i) | $4\text{Li} + \text{O}_2 \rightarrow 2\text{Li}_2\text{O}$                        | multiples and halves                                          |       | 2  |
|           |                                                                                   | eg only potassium catches fire, they react at different rates |       |    |
|           | forms a ball/bead/melts                                                           | comparison between the two,                                   |       |    |
|           | faster/fizzes more/explodes flame (IGNORE colour)/catches fire                    | reverse arguments for lithium                                 |       |    |
|           | more vigorous/move around faster/reacts                                           |                                                               |       | 2  |
|           | Differences – any two from: Potassium:                                            |                                                               |       |    |
|           | forms a solution                                                                  |                                                               |       |    |
|           | <ul> <li>disappears/dissolves</li> </ul>                                          | exothermic/gives out heat                                     |       |    |
|           | <ul> <li>fizzes/effervesces/bubbles/produces<br/>gas/produces hydrogen</li> </ul> | react vigorously                                              |       |    |
|           | moves around                                                                      | hydroxide                                                     |       |    |
| (d)       | Similarities - any two from:  • floats                                            | forms an alkali/forms a                                       |       | 2  |

| Question  | Answer                                                                                                     | Accept               | Reject | Marks |
|-----------|------------------------------------------------------------------------------------------------------------|----------------------|--------|-------|
| 9 (a) (i) | M1 & M2- all points correctly plotted to nearest gridline deduct 1 mark for each incorrectly plotted point |                      | -      | 2     |
|           | M3 smooth curve of best fit drawn                                                                          |                      |        | 1     |
|           | 170- 160- 150- 130- 120- 110- 10 20 30 40 50 60 70 Temperature in °C                                       |                      |        |       |
| (ii)      | value from candidate's graph to nearest gridline Penalise incorrect units                                  |                      |        | 1     |
| (iii)     | as temperature <u>increases</u> , time (taken) <u>decreases</u>                                            | reverse argument     |        | 1     |
|           | IGNORE references to rate and inverse proportionality                                                      | negative correlation |        |       |

| Question number | Answer                                                                                                                                                                                                                                                                                                | Accept                                           | Reject                          | Marks |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|---------------------------------|-------|
| 9 (b)           | <ul> <li>M1 (average kinetic) energy of particles/ions increases</li> <li>M2 more collisions/particles/ions have energy ≥ activation energy</li> <li>M3 more (successful) collisions per second / more frequent (successful) collisions</li> <li>IGNORE references to chance of collisions</li> </ul> | particles move faster sufficient energy to react | molecules/atoms (but once only) | 1 1 1 |
|                 | Penalise reference to molecules once only                                                                                                                                                                                                                                                             |                                                  |                                 |       |
| (c)             | (same) concentration (of each solution)                                                                                                                                                                                                                                                               | (same) volume (of each solution)                 |                                 | 1     |
|                 |                                                                                                                                                                                                                                                                                                       | (same) amount of (each) solution                 |                                 |       |
|                 |                                                                                                                                                                                                                                                                                                       | rate of mixing                                   |                                 |       |
|                 |                                                                                                                                                                                                                                                                                                       |                                                  | Total                           | 9     |

| Question number | Answer                                                                                                                                                                                                                | Accept                                                                    | Reject | Marks |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--------|-------|
| 10 (a)          | initial final changes 16 17 (+)1 16 19 (+)3 16 21 (+)5  M1 & M2 all 6 temperature readings correct deduct one mark for each incorrect value  M3 all 3 temperature changes correct Mark M3 csq on temperature readings |                                                                           |        | 2     |
| (b)             | <ul><li>M1 (the smaller the chips the) larger the (total) surface area</li><li>M2 more (thermal) energy (is transferred to the water)</li></ul>                                                                       | heat for thermal energy faster reaction reverse argument for experiment 1 |        | 1     |
| (c)             | M1 (it would be) lower  M2 larger volume of liquid/more liquid to heat     up (with same amount of thermal energy transferred)  M2 dep on M1                                                                          | water or acid in place of liquid                                          |        | 1     |
|                 |                                                                                                                                                                                                                       |                                                                           | Total  | 7     |

| Question number | Answer                                                                                        | Accept                                              | Reject            | Marks |
|-----------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------|-------------------|-------|
| 11 (a)          | oxidised <u>AND</u> gain of oxygen IGNORE reference to loss of electrons                      | increase in oxidation number                        | gain of electrons | 1     |
| (b)             | M1 it/magnesium is more reactive than titanium                                                | reverse argument                                    |                   | 1     |
|                 | <ul><li>M2 it/magnesium has displaced titanium</li><li>M2 dep on M1</li></ul>                 | replaced                                            |                   | 1     |
|                 | Wiz dep on Wi                                                                                 |                                                     |                   |       |
| (c)             | it/magnesium chloride has a different/lower boiling point  IGNORE references to melting point | more volatile reverse argument                      |                   | 1     |
| (d)             | M1 (aircraft engines) – high strength-to-weight ratio                                         | high m.pt / corrosion resistant                     | not corrosive     | 1     |
|                 | M2 (hip replacements) – non-toxic                                                             | high strength-to-weight ratio / corrosion resistant |                   | 1     |
|                 | M3 (propellers) – corrosion resistant                                                         |                                                     | not corrosive     | 1     |
|                 | NO USE CAN BE GIVEN TWICE                                                                     |                                                     |                   |       |
|                 |                                                                                               |                                                     | Total             | 7     |

| Question number | Answer                                                                                                                              | Accept                                                          | Reject | Marks |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|--------|-------|
| 12 (a) (i)      | M1 24                                                                                                                               |                                                                 |        | 1     |
|                 | <b>M2</b> 0.004(0)                                                                                                                  |                                                                 |        | 1     |
| (ii)            | M1 25(.0)×0.4(00)<br>1000                                                                                                           |                                                                 |        |       |
|                 | <b>M2</b> 0.01(00)                                                                                                                  | an answer of 10(.0) for 1 mark (i.e. failing to divide by 1000) |        |       |
| (b)             | M1 0.004 mol of Mg react with 0.008 mol of HCI  OR  0.01 is greater than 0.008 / M2 from (a)(ii) is greater than 2 x M2 from (a)(i) | Mg and HCl react in a 1:2 ratio (by moles)                      |        | 1     |
|                 | M2 HCl is in excess                                                                                                                 |                                                                 |        | 1     |
|                 | M2 dep on M1                                                                                                                        |                                                                 |        |       |
|                 | Mark csq on answers in (a)(i) and (a)(ii)                                                                                           |                                                                 |        |       |
|                 |                                                                                                                                     |                                                                 | Total  | 6     |

| Question<br>number | Answer                                                                                             | Accept                                                      | Reject                     | Marks |
|--------------------|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------|----------------------------|-------|
| 13 (a)             | M1 air                                                                                             | atmosphere                                                  |                            | 1     |
|                    | M2 natural gas / water/ hydrocarbons                                                               | steam                                                       |                            | 1     |
| (b)                | M1 (temperature) 400 to 500°C                                                                      | methane<br>623 to 823 K                                     |                            | 1     |
|                    | (temperature) 400 to 300 °C                                                                        | 023 to 023 K                                                |                            | '     |
|                    | M2 (pressure) 150 to 250 atmospheres                                                               | atm / bar                                                   |                            | 1     |
|                    | Units required, but allow one mark for both numbers correct with units missing                     |                                                             |                            |       |
|                    | M3 (catalyst) iron / Fe                                                                            |                                                             |                            | 1     |
|                    | IGNORE references to promoters such as iron oxide                                                  |                                                             |                            |       |
| (c)                | nitric acid / nitric(V) acid                                                                       |                                                             | all other oxidation states | 1     |
| (d)                | <b>M1</b> $n(NH_3) = \frac{25(0) \times 0.5(00)}{1000} / 7.5 \times 10^{-3} \text{ (mol)}$         | other suitable<br>methods, e.g.<br>use of $V_1M_1 = V_2M_2$ |                            | 1     |
|                    | <b>M2</b> $n(\text{HNO}_3) = \frac{25(0) \times 0.3(00)}{1000} / 7.5 \times 10^{-3} \text{ (mol)}$ | 722                                                         |                            | 1     |
|                    | <b>M3</b> $conc.(HNO_3) = 0.5(00) \text{ (mol/dm}^3)$                                              |                                                             |                            | 1     |
|                    | OR MS ×1000 correctly evaluated                                                                    |                                                             |                            |       |
|                    | Mark csq throughout                                                                                |                                                             |                            |       |
|                    | correct answer with no working scores 3                                                            |                                                             |                            |       |
|                    |                                                                                                    |                                                             | Total                      | 9     |

| Question number | Answer                                                                                                                      | Accept                             | Reject         | Marks |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------|------------------------------------|----------------|-------|
| 14 (a)          | Any two from:  M1 both forward and backwards reactions are occurring                                                        |                                    |                | 2     |
|                 | M2 amounts/concentrations of reactants and products stay the same/pressure (of gas mixture) stays the same                  | masses for amounts                 | are the same   |       |
|                 | M3 rate of forward reaction = rate of backwards reaction                                                                    |                                    |                |       |
| (b) (i)         | M1 increase                                                                                                                 |                                    |                | 1     |
|                 | M2 (forward) reaction is exothermic/gives out heat                                                                          | reverse reaction is endothermic    | equilibrium    | 1     |
|                 | M2 dep on M1                                                                                                                | endotnermic                        | shifts to left |       |
|                 | IGNORE references to le Chatelier's principle and to reaction tries to decrease the temperature/equilibrium shifts to right |                                    |                |       |
| (b) (ii)        | M1 increase                                                                                                                 |                                    |                | 1     |
|                 | M2 fewer moles/molecules (of gas) on right (hand side)                                                                      | more molecules on left (hand side) | equilibrium    | 1     |
|                 | M2 dep on M1                                                                                                                | lett (flatia side)                 | shifts to left |       |
|                 | IGNORE references to le Chatelier's principle and to reaction tries to decrease the pressure/equilibrium shifts to right    |                                    |                |       |

| (c) (i) | $2CH_3OH + O_2 \rightarrow 2H_2CO + 2H_2O$                                                                                                                              | multiples and halves                           |       | 2  |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-------|----|
|         | M1 formulae                                                                                                                                                             |                                                |       |    |
|         | M2 balancing                                                                                                                                                            |                                                |       |    |
|         | M2 dep on M1                                                                                                                                                            |                                                |       |    |
|         | IGNORE catalyst if on both sides or above arrow                                                                                                                         |                                                |       |    |
|         | IGNORE state symbols                                                                                                                                                    |                                                |       |    |
| (ii)    | M1 – a substance that increases the rate of a reaction                                                                                                                  | mass does not                                  |       | 1  |
|         | IGNORE alters the rate and any reference to enzymes                                                                                                                     | change                                         |       | •  |
|         | M2 and is chemically unchanged (at the end of the reaction)                                                                                                             | without being used up                          |       | 1  |
|         | IGNORE references to takes no part in the reaction                                                                                                                      |                                                |       |    |
| (iii)   | M1 provides an alternative reaction path(way)/route/mechanism                                                                                                           |                                                |       | 1  |
|         | M2 (alternative path has a) lower activation energy [Activation energy can be described, e.g. the minimum energy needed (by colliding particles) for reaction to occur] | M1 molecules adsorb on/stick to the catalyst   |       | 1  |
|         | MAX 1 if any mention of particles gaining energy                                                                                                                        | M2 weakens the bonds in the reactant molecules |       |    |
| (d)     | $2CH_3OH + 3O_2 \rightarrow 2CO_2 + 4H_2O$                                                                                                                              | multiples and halves                           |       | 2  |
|         | M1 all formulae correct                                                                                                                                                 | correct equation for                           |       |    |
|         | M2 balanced                                                                                                                                                             | methanal for one mark                          |       |    |
|         | M2 dep on M1                                                                                                                                                            | IIIdiK                                         |       |    |
|         | IGNORE state symbols                                                                                                                                                    |                                                |       |    |
|         |                                                                                                                                                                         |                                                | Total | 14 |

www.xtrapapers.com



www.xtrapapers.com