

# Mark Scheme (Results)

Summer 2015

Pearson Edexcel International GCSE Mathematics A (4MA0) Paper 4HR



#### **Edexcel and BTEC Qualifications**

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

#### Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: <u>www.pearson.com/uk</u>

Summer 2015 Publications Code UG042087 All the material in this publication is copyright © Pearson Education Ltd 2015

# **General Marking Guidance**

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme.

Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.

- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Types of mark
  - M marks: method marks
  - A marks: accuracy marks
  - B marks: unconditional accuracy marks (independent of M marks)
- Abbreviations
  - cao correct answer only
  - ft follow through
  - isw ignore subsequent working
  - SC special case
  - oe or equivalent (and appropriate)
  - dep dependent
  - $\circ$  indep independent
  - eeoo each error or omission
  - $\circ$  awrt –answer which rounds to

# • No working

If no working is shown then correct answers normally score full marks

If no working is shown then incorrect (even though nearly correct) answers score no marks.

# • With working

If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.

If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.

Any case of suspected misread loses A (and B) marks on that part, but can gain the M marks.

If working is crossed out and still legible, then it should be given any appropriate marks, as long as it has not been replaced by alternative work.

If there is a choice of methods shown, then no marks should be awarded, unless the answer on the answer line makes clear the method that has been used.

If there is no answer on the answer line then check the working for an obvious answer.

# • Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct.

It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.

Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

# • Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded in another.

| Apart from Questions and 15d and 19b, where the mark scheme states otherwise, the correct answer, unless clearly obtained by an incorrect method, should be taken to imply a correct method. |                   |                              |   |    |                                 |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------------------------------|---|----|---------------------------------|--|--|
| Question                                                                                                                                                                                     | on Working Answer |                              |   |    | Notes                           |  |  |
| <b>1</b> (i)                                                                                                                                                                                 |                   | {i, a}                       |   | B1 | Brackets and commas not needed. |  |  |
| (ii)                                                                                                                                                                                         |                   | $\{c, h, i, n, a, t, l, y\}$ | 2 | B1 | Do not allow repetitions.       |  |  |
|                                                                                                                                                                                              |                   |                              |   |    | Total 2 marks                   |  |  |

| 2 | $\frac{638}{2.75} \text{ or } \frac{638}{2\frac{3}{4}} \text{ or } \frac{638}{11/4} \text{ or } \frac{638}{11} \times 4 \text{ or } \frac{638}{165} \times 60 \text{ oe}$ |     |   | M2 | M1 for $638 \div 2.45$ or<br>260(.408) rounded or truncated to<br>3 or more significant figures or<br>$638 \div 165$ or<br>3.86(6666) rounded or truncated to<br>3 or more significant figures. |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |                                                                                                                                                                           | 232 | 3 | A1 | cao                                                                                                                                                                                             |
|   |                                                                                                                                                                           |     |   |    | Total 3 marks                                                                                                                                                                                   |

| <b>3</b> (a) | Eg $\frac{7\frac{1}{2}}{100}$ ×15000 or 0.075 × 15000 oe or 1125 or<br>0.075 × 15000 + 15000 or 15000×1.075 oe                                                                                            | 16105 |   | M1       | For finding 7.5% of 15000 or<br>for a complete method to increase<br>15000 by 7.5% (eg $1.075 \times 15000$ )                                                          |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              |                                                                                                                                                                                                           | 16125 | 2 | A1       | cao                                                                                                                                                                    |
| (b)          | Eg $\frac{1800}{8} \times 108$ or $\frac{1800}{0.08} \times 1.08$ or $22500 \times 1.08$ or $\frac{1800}{0.08} + 1800$ or $\frac{1800}{8} \times 100 + 1800$ or $225 \times 100 + 1800$ or $22500 + 1800$ | 24300 | 3 | M2<br>A1 | For a complete method<br>M1 for 8% = 1800 or $0.08x = 1800$ or<br>$\frac{1800}{8}$ or 225 or<br>$\frac{1800}{0.08}$ or 22500 or<br>$\frac{x}{1800} = \frac{108}{8}$ oe |
|              |                                                                                                                                                                                                           |       |   |          | _                                                                                                                                                                      |
|              |                                                                                                                                                                                                           |       |   |          | Total 5 marks                                                                                                                                                          |

| <b>4</b> (a) | (-2,-4), (-1,-1), (0,2), (1,5), (2,8), (3,11) | correct line drawn    |   | B3 | For a correct line between $x = -2$ and                                  |
|--------------|-----------------------------------------------|-----------------------|---|----|--------------------------------------------------------------------------|
|              |                                               | from between $x = -2$ |   |    | x = 3.                                                                   |
|              |                                               | and $x = 3$           |   |    |                                                                          |
|              |                                               |                       |   | B2 | If not B3, then B2 for:                                                  |
|              |                                               |                       |   |    | • at least 2 correct points                                              |
|              |                                               |                       |   |    | plotted or                                                               |
|              |                                               |                       |   |    | • for a line passing through at                                          |
|              |                                               |                       |   |    | least 2 correct points or                                                |
|              |                                               |                       |   |    | • for a line drawn with positive gradient through (0,2) and              |
|              |                                               |                       |   |    | clear intention to use a                                                 |
|              |                                               |                       |   |    | gradient of 3 (eg. a line                                                |
|              |                                               |                       |   |    | through and $(0, 2)$ and                                                 |
|              |                                               |                       |   |    | (0.5,5))                                                                 |
|              |                                               |                       |   |    |                                                                          |
|              |                                               |                       |   | B1 | If not B2 then B1for:                                                    |
|              |                                               |                       |   |    | • at least 2 correct points stated                                       |
|              |                                               |                       |   |    | <ul><li>(may be in a table) or</li><li>for a line drawn with a</li></ul> |
|              |                                               |                       | 3 |    | positive gradient through #                                              |
|              |                                               |                       | _ |    | (0, 2) or                                                                |
|              |                                               |                       |   |    | • for a line with gradient 3.                                            |
| (b)          |                                               |                       |   | M1 | ft for a point marked above their                                        |
|              |                                               |                       |   |    | y = 3x + 2 if at least B1 scored in (a)                                  |
|              |                                               |                       |   |    | or                                                                       |
|              |                                               |                       |   |    | for a point to the right of $x = 2$                                      |

|  | correct point | 2 | A1 | Point marked above $y = 3x + 2$ and<br>to the right of $x = 2$ (not on lines).<br>Label <i>P</i> may be omitted if<br>unambiguous.<br>SCB1 for the correct region identified<br>by either shading in or shading out. |
|--|---------------|---|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|  |               |   |    | Total 5 marks                                                                                                                                                                                                        |

| 5 (a) | $\frac{4+9+7+1+6+3}{2} \text{ or } \frac{(4+9+7+1+6+3)+1}{2} \text{ or}$ $\frac{30}{2} \text{ or } \frac{31}{2} \text{ or } 15 \text{ or } 15\frac{1}{2}$                                                               | 2 | 2 | M1 Condone 1 omission<br>Eg $\frac{9+7+1+6+3}{2}$<br>Accept a clear intention to list the<br>numbers in order and find the centre<br>of the list.                            |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (b)   |                                                                                                                                                                                                                         |   |   | M2 For Lower quartile = 1 AND Upper<br>quartile = 4<br>Accept a correct ordered list of the 30<br>numbers with both quartiles clearly<br>identified in the correct position. |
|       | $\frac{4+9+7+1+6+3}{4}$ or $\frac{(4+9+7+1+6+3)+1}{4}$ or                                                                                                                                                               |   |   | M1 for Lower quartile = 1 or<br>Upper quartile = 4 or                                                                                                                        |
|       | $\frac{30}{4} \text{ oe} (=7.5) \text{ or } \frac{31}{4} \text{ oe} (=7.75) \text{ or } 8 \text{ or} 3 \times \frac{"30"}{4} \text{ oe} (=22.5) \text{ or } 3 \times \frac{"31"}{4} \text{ oe} (=23.25) \text{ or } 23$ |   |   | Accept a correct ordered list of the 30<br>numbers with the position of one of<br>the quartiles clearly identified in the<br>correct position.                               |
|       |                                                                                                                                                                                                                         | 3 | 3 | A1                                                                                                                                                                           |
|       |                                                                                                                                                                                                                         |   |   | Total 5 marks                                                                                                                                                                |

| <b>6</b> (a) | 1 - 0.44 - 0.42 - 0.04 or $1 - 0.9$ |         |   | M1                                                       |
|--------------|-------------------------------------|---------|---|----------------------------------------------------------|
|              |                                     | 0.1 oe  | 2 | A1 Accept $\frac{1}{10}$ oe or 10 %                      |
| (b)          |                                     | 0.86 oe | 1 | B1 Accept $\frac{86}{100}$ or $\frac{43}{50}$ oe or 86 % |
| (c)          | 1200×0.04                           |         |   | M1                                                       |
|              |                                     | 48      |   | A1 Accept 48 out of 1200                                 |
|              |                                     |         | 2 | Note: M1A0 for 48/1200                                   |
|              |                                     |         |   | Total 5 marks                                            |

| 7. | 180+43 or $360-(180-43)$ or $360-137$ |     |   | M1 For a complete method. |
|----|---------------------------------------|-----|---|---------------------------|
|    |                                       | 223 | 2 | A1                        |
|    |                                       |     |   | Total 2 marks             |

| 8 | (a) | Eg $\frac{175}{7} \times 9$                                                                                                                                                               |          |   | M1 | For a complete method                                                                                                                                                                                                                             |
|---|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |     |                                                                                                                                                                                           | 225      | 2 | A1 |                                                                                                                                                                                                                                                   |
|   | (b) | $\frac{400}{27+14+9} \times 27$ oe or $\frac{400}{27+14+9}$ or $\frac{400}{50}$ or 8                                                                                                      |          |   | M1 |                                                                                                                                                                                                                                                   |
|   |     |                                                                                                                                                                                           | 216      | 2 | A1 |                                                                                                                                                                                                                                                   |
|   | (c) | $(9:7=)$ 27:21 or $9:\frac{14}{3}$<br>Or Flaky: (flour <i>x</i> ), fat $\frac{7}{9}x$ and Sweet: (flour <i>x</i> ), fat $\frac{14}{27}x$<br>where <i>x</i> may also be any positive value |          |   | M1 | For $\frac{7}{9}x$ and $\frac{14}{27}x$ where x may also<br>be any positive value<br>Eg $\frac{7}{9}$ and $\frac{14}{27}$<br>Eg $\frac{7}{9} \times 270$ and $\frac{14}{27} \times 270$ (x = 270) or<br>For $\frac{14}{27} \times \frac{9}{7}$ oe |
|   |     |                                                                                                                                                                                           | 3 : 2 oe | 2 | A1 | Eg $\frac{7}{9}$ : $\frac{14}{27}$ or 21 : 14 or 189 : 126 or<br>1 : $\frac{2}{3}$ or 1.5 : 1<br>ISW only if answer is incorrectly<br>simplified<br>SCB1 for answer of 2:3 oe                                                                     |
|   |     |                                                                                                                                                                                           |          |   |    | Total 6 marks                                                                                                                                                                                                                                     |

| 9. | (a) |                                                                                                                       | 10 <i>p</i> -15    | 1 | B1 | Accept $10 \times p - 15$                                                                                   |
|----|-----|-----------------------------------------------------------------------------------------------------------------------|--------------------|---|----|-------------------------------------------------------------------------------------------------------------|
|    | (b) | 9 - 3 < 2x or                                                                                                         |                    |   | M1 | Allow equals sign (Eg $6 = 2x$ ) or<br>condone incorrect inequality sign<br>(eg $6 > 2x$ )                  |
|    |     | 6 < 2x or                                                                                                             |                    |   |    |                                                                                                             |
|    |     | -2x < 3-9 or                                                                                                          |                    |   |    |                                                                                                             |
|    |     | -2x < -6                                                                                                              |                    |   |    |                                                                                                             |
|    |     |                                                                                                                       | <i>x</i> > 3       |   | A1 | Allow $3 < x$<br>NB: Final answer must be an<br>inequality<br>SCB1 for $x \ge 3$ or $x < 3$ or $x = 3$ or 3 |
|    |     |                                                                                                                       |                    | 2 |    | as an answer                                                                                                |
|    | (c) | $6 = (-2)^3 - k(-2) + 5$ or $6 = -8 + 2k + 5$                                                                         |                    |   | M1 | For correct substitution<br>Allow omission of brackets.                                                     |
|    |     | Eg $6+8-5=2k$ or $-2k=-8+5-6$ or $9=2k$ or                                                                            |                    |   | M1 | For correctly isolating $2k$ or $-2k$ or $k$                                                                |
|    |     | $-9 = -2k \text{ or } k = \frac{(-2)^3 - 6 + 5}{-2} \text{ or } -k = \frac{6 - (-2)^3 - 5}{-2} \text{ or } -k = -4.5$ |                    |   |    | or $-k$ in a correct equation.                                                                              |
|    |     |                                                                                                                       | 4.5                | 3 | A1 | Accept $4\frac{1}{2}, \frac{9}{2}$                                                                          |
|    | (d) | $1 = 3(f+2)$ or $1 = 3f+6$ or $\frac{1}{3} = f+2$                                                                     |                    |   | M1 |                                                                                                             |
|    |     |                                                                                                                       | $-1\frac{2}{3}$ oe | 2 | A1 | Accept –1.66(666) correctly<br>rounded or truncated to at least 3<br>significant figures.                   |
|    |     |                                                                                                                       |                    |   |    | Total 8 marks                                                                                               |

| 10. | $\cos 56^\circ = \frac{7.4}{x}$ or $7.4 = x\cos 56$ or<br>$\sin(90 - 56) = \frac{7.4}{x}$ or $7.4 = x\sin(90 - 56)$ |      |   | M1 | Correct equation for $x^2$<br>eg $x^2 = 7.4^2 + (7.4 \tan 56^\circ)^2$       | Correct statement of Sine rule<br>eg $\frac{x}{sin90} = \frac{7.4}{\sin(90-56)}$ |
|-----|---------------------------------------------------------------------------------------------------------------------|------|---|----|------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
|     | $(x = ) \frac{7.4}{\cos 56}$ or $\frac{7.4}{\sin (90-56)}$                                                          |      |   | M1 | Correct expression for x<br>eg<br>$x = \sqrt{7.4^2 + (7.4 \tan 56^\circ)^2}$ | Correct expression for x<br>eg (x) = $\frac{7.4}{\sin (90-56)} \times \sin(90)$  |
|     |                                                                                                                     | 13.2 | 3 | A1 | awrt 13.2                                                                    |                                                                                  |
|     |                                                                                                                     |      |   |    |                                                                              | Total 3 marks                                                                    |

| 11. | $2\pi \times 3.5 \times 8.2 + 2\pi \times 3.5^2$ or $57.4\pi + 24.5\pi$ or<br>81.9 $\pi$ or 180(.327) + 76.9(690) or<br>$2\pi \times 3.5 \times 8.2 + \pi \times 3.5^2$<br>or 180(.327) + 38.4(845) or 218(.81) |     |   | M2 | Allow 76.9(690), 180(.327),<br>38.4(845) and 218(.81) if rounded<br>or truncated to at least 3 significant<br>figures.<br>M1 for $2 \times \pi \times 3.5 \times 8.2$ or<br>$57.4\pi$ or $180(.3274)$ or<br>$2 \times \pi \times 3.5^2$ or<br>$24.5\pi$ or 77 or 76.9(690) |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |                                                                                                                                                                                                                 | 257 | 3 | A1 | awrt 257                                                                                                                                                                                                                                                                   |
|     |                                                                                                                                                                                                                 |     |   |    | Total 3 marks                                                                                                                                                                                                                                                              |

| 12. | (Gradient =) $-\frac{3}{5}$ or $(m =) -\frac{3}{5}$ |                            |   | M1 Allow (gradient or $m$ ) = $\frac{3}{5}$ or                                                              |
|-----|-----------------------------------------------------|----------------------------|---|-------------------------------------------------------------------------------------------------------------|
|     |                                                     |                            |   | (y = ) $-\frac{3}{5}x + c$ (c may be a number)<br>M1 Indep<br>(y = ) mx + 3<br>(m may be a number except 0) |
|     |                                                     | 3 r + 3 co                 |   | Allow y intercept or $c = 3$ stated<br>A1 oe                                                                |
|     |                                                     | $y = -\frac{3}{5}x + 3$ oe |   | Eg Accept 5y + 3x = 15 or<br>$y - 3 = -\frac{3}{5}(x - 0)$ or<br>$y - 0 = -\frac{3}{5}(x - 5)$              |
|     |                                                     |                            |   | 5                                                                                                           |
|     |                                                     |                            | 3 | SC B2 for $-\frac{3}{5}x+3$ or $L = -\frac{3}{5}x+3$                                                        |
|     |                                                     |                            |   | Total 3 marks                                                                                               |

| <b>13.</b> (a) | Eg. $\frac{12}{12+8}$ or $\frac{3}{5}$ or 0.6 or $\frac{12+8}{12}$ or $\frac{5}{3}$ or 1.66(66) or<br>$\frac{MN}{13.5} = \frac{12}{12+8}$ or $(MN = )\frac{12}{12+8} \times 13.5$ or                                                                     | 8.1               | 2 | M1<br>A1 | for correct scale factor or correct<br>equation involving <i>MN</i> or correct<br>expression for <i>MN</i><br>Allow use of 1.66(66) in place of $\frac{5}{3}$<br>if rounded or truncated to at least 3<br>significant figures<br>oe                                                                                                                                                                       |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (b)            | Eg $\frac{PQ}{9} = \frac{12+8}{12}$ oe or $\frac{PQ}{9} = \frac{13.5}{"8.1"}$ or $PQ = 9 \times \frac{12+8}{12}$ oe or<br>$PQ = 9 \times \frac{13.5}{"8.1"}$ oe or $PQ = 15$<br>or $\frac{LQ}{9} = \frac{8}{12}$ oe or $(LQ =) 9 \times \frac{8}{12}$ oe | 0.1               |   | M1       | Correct expression for <i>PQ</i> or <i>LQ</i><br>(eg $9 \times \frac{5}{3}$ oe or $9 \times \frac{2}{3}$ oe)<br>Correct equation involving <i>PQ</i> or <i>LQ</i><br>(eg $\frac{PQ}{9} = \frac{5}{3}$ oe or $\frac{LQ}{9} = \frac{2}{3}$ oe)<br>Allow use of 1.66(66) in place of $\frac{5}{3}$<br>or 0.666(66) in place of $\frac{2}{3}$ if rounded<br>or truncated to at least 3 significant<br>figures |
|                |                                                                                                                                                                                                                                                          | 6                 | 2 | A1       |                                                                                                                                                                                                                                                                                                                                                                                                           |
| (c)            |                                                                                                                                                                                                                                                          | $\frac{25}{9}$ oe |   | B1       | Accept $2\frac{7}{9}$<br>Accept 2.77(777) rounded or<br>truncated to at least 3 significant<br>figures<br>Also accept $\left(\frac{20}{12}\right)^2$ or $\left(\frac{5}{3}\right)^2$                                                                                                                                                                                                                      |
|                |                                                                                                                                                                                                                                                          |                   | 1 |          | Also accept $\left(\frac{1}{12}\right)$ or $\left(\frac{1}{3}\right)$                                                                                                                                                                                                                                                                                                                                     |

| (d) | Eg " $\left(\frac{25}{9}\right)$ " $A - A = 105.6$ or $A\left("\left(\frac{25}{9}\right)" - 1\right) = 105.6$ or $A\left("\left(\frac{16}{9}\right)"\right) = 105.6$ or " $\left(\frac{25}{9}\right)$ " $A = 105.6 + A$ or |      |   | M1 | For a correct equation involving <i>A</i> ft from part (c)                                                                            |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---|----|---------------------------------------------------------------------------------------------------------------------------------------|
|     | $\frac{105.6+A}{"25/9"} = A$                                                                                                                                                                                               |      |   |    |                                                                                                                                       |
|     | $(A =) \frac{105.6}{\frac{25}{9} - 1}$ or $(A =) \frac{105.6}{1.77}$ or $(A =) \frac{105.6 \times 9}{16}$                                                                                                                  |      |   | M1 | For correct expression for <i>A</i> .<br>ft from part (c)<br>Decimal values should be rounded or<br>truncated correct to at least 3SF |
|     |                                                                                                                                                                                                                            | 59.4 | 3 | A1 | oe                                                                                                                                    |
|     |                                                                                                                                                                                                                            |      |   |    | Total 8 marks                                                                                                                         |

| <b>14.</b> (a) | $V = \frac{k}{t^2}$                                                                 |                       |   | M1  | Allow $Vt^2 = k$ or $t^2 = \frac{k}{V}$<br>Do not allow $V = \frac{1}{t^2}$                                                          |
|----------------|-------------------------------------------------------------------------------------|-----------------------|---|-----|--------------------------------------------------------------------------------------------------------------------------------------|
|                | $28 = \frac{k}{2.5^2} \text{ oe or}$<br>$k = 28 \times 2.5^2 \text{ or}$<br>k = 175 |                       |   | M1  | For correct substitution in a correct<br>equation<br>Implies first M1<br>Award M2 if $k = 175$ stated<br>unambiguously in (a) or (b) |
|                |                                                                                     | $V = \frac{175}{t^2}$ |   | A1  | Only award if $V$ is the subject.                                                                                                    |
|                |                                                                                     | $t^2$                 |   |     | Award M2A1 if $V = \frac{k}{t^2}$ on answer line                                                                                     |
|                |                                                                                     |                       | 3 |     | and <i>k</i> evaluated as 175 in part (a) or part (b)                                                                                |
| (b)            | $V = \frac{"175"}{6.25^2}$                                                          |                       |   | M1  | ft for $k$ if $k > 1$                                                                                                                |
|                | 6.25 <sup>2</sup>                                                                   | 4.48                  | 2 | A1  |                                                                                                                                      |
|                |                                                                                     |                       |   | 111 | Total 5 marks                                                                                                                        |

| <b>15.</b> (a) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1, 5, 2                              | 21                 | 1 | B1       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------------------|---|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (b)            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | correct c                            | curve              | 1 | B1       | Correct curve through (1,3), (2, 1), (3, 5), and (4, 21).                                                                                                                                                                                                                                                                                                                                                                                                                |
| (c)            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -1.                                  | 1                  | 1 | B1       | Accept $-1.15 \le x \le -1.05$                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| (d)            | $y = 1 - 2x \operatorname{drawn}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                    |   | M2       | Line must be long enough to cross curve and verify accuracy.                                                                                                                                                                                                                                                                                                                                                                                                             |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                      |                    |   |          | M1 for $x^3 - 3x^2 + 5 = -2x + 1$ or<br>y = -2x + 1 oe                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -0.8                                 | 8                  | 3 | A1       | dep on M2                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                      |                    | 5 |          | Accept $-0.9 \le x \le -0.7$<br>Total 6 marks                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                      |                    |   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 16.            | $4\left(\frac{1}{6}\right)\left(\frac{5}{6}\right)^3 + 6\left(\frac{1}{6}\right)^2\left(\frac{5}{6}\right)^2 + 4\left(\frac{1}{6}\right)^3\left(\frac{5}{6}\right) + \left(\frac{1}{6}\right)^4 \text{ or }$ $\left(\frac{1}{6}\right) + \left(\frac{5}{6}\right) \times \left(\frac{1}{6}\right) + \left(\frac{5}{6}\right) \times \left(\frac$ | $\times \left(\frac{1}{6}\right)$ or | <u>671</u><br>1296 | 3 | M2<br>A1 | Accept use of 0.16(666) in place of $\frac{1}{6}$<br>and 0.83(3333) in place of $\frac{5}{6}$ rounded<br>or truncated to at least 2 decimal<br>places.<br>M1 for $\left(\frac{1}{6}\right) \times \left(\frac{5}{6}\right)^3$ or<br>$\left(\frac{1}{6}\right)^2 \times \left(\frac{5}{6}\right)^2$ or $\left(\frac{1}{6}\right)^3 \times \left(\frac{5}{6}\right)$ or $\left(\frac{1}{6}\right)^4$ or<br>P(no sixes) = $\left(\frac{5}{6}\right)^4$<br>Accept awrt 0.518 |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                      |                    |   |          | Total 3 marks                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

| <b>17.</b> (a) |                                                                                                                                                                                                                               | 21 | 1 | B1 |                                                                                                                                                                                                             |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (b)            |                                                                                                                                                                                                                               | 62 | 1 | B1 |                                                                                                                                                                                                             |
| (c)            | $\angle KJL = 37^{\circ} \text{ or } \angle PJM = 60^{\circ} \text{ or } \angle LKM = 60^{\circ}$<br>or $\angle LMP = 37^{\circ} \text{ or } \angle MPJ = 58^{\circ} \text{ or } MPL = 122^{\circ}$<br>or $JPK = 122^{\circ}$ |    |   | M2 | If not M2 then M1 for:<br>$\angle GJL = 81^{\circ}$ or<br>$\angle GMJ = 81^{\circ}$ or<br>$JKL = 81^{\circ}$ or<br>$JML = 99^{\circ}$<br>Angles may be marked on the diagram<br>or labelled in the working. |
|                |                                                                                                                                                                                                                               | 58 | 3 | A1 |                                                                                                                                                                                                             |
|                |                                                                                                                                                                                                                               |    |   |    | Total 5 marks                                                                                                                                                                                               |
| 18.            | $\frac{90}{0.6} \text{ or } 150 \text{ or } \frac{120}{0.4} \text{ or } 300 \text{ or } \frac{95}{0.5} \text{ or } 190 \text{ or } \frac{45}{1.5} \text{ or } 30$                                                             |    |   | M1 | For one correct bar drawn or<br>one correct frequency density, not<br>including $0 \le w \le 1$ or<br>1 small square = 1 or<br>1 large (cm) square = 25                                                     |
|                | Frequency density =150, 300, 190, 30                                                                                                                                                                                          |    |   | M1 | For three correct bars drawn or three frequency densities, not including $0 \le w \le 1$                                                                                                                    |

All bars correct.

Total 3 marks

3

A1

correct bars

heights 3, 6, 3.8, 0.6 cm

| (a) (ii)01B1(a)(iii) $\frac{3}{2}$ 1 $\frac{11}{5}$ , $1\frac{1}{2}$ (b)Eg $\sqrt{245} = \sqrt{49} \times \sqrt{5}$ or $\sqrt{245} = \sqrt{49 \times 5}$ orM1For simplifying $\sqrt{24}$<br>for rationalising the $\frac{14}{\sqrt{49 \times 5}}$ or $\frac{14}{\sqrt{49 \times 5}}$ $\frac{14}{\sqrt{49 \times 5}}$ or $\frac{14\sqrt{245}}{245}$ or $\frac{14\times7\sqrt{5}}{245}$ A1For simplifying $\sqrt{24}$<br>for rationalising theNote:<br>To rationalise $\frac{14}{\sqrt{245}}$ accept $\frac{14}{\sqrt{245}} \times \frac{\sqrt{245}}{\sqrt{245}}$ or $\frac{14\sqrt{245}}{245}$ $\frac{2\sqrt{5}}{5}$ A1For simplifying $\sqrt{24}$<br>for rationalising the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| (b) Eg $\sqrt{245} = \sqrt{49} \times \sqrt{5}$ or $\sqrt{245} = \sqrt{49 \times 5}$ or<br>$\frac{14}{\sqrt{49 \times 5}} \text{ or } \frac{14}{\sqrt{49} \times \sqrt{5}}$ $\frac{14}{\sqrt{245}} \times \frac{\sqrt{245}}{\sqrt{245}} \text{ or } \frac{14 \times 7\sqrt{5}}{245}$ Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note:<br>Note: |                                                                               |
| $\frac{14}{\sqrt{49 \times 5}} \text{ or } \frac{14}{\sqrt{49} \times \sqrt{5}}$ $\frac{14}{\sqrt{245}} \times \frac{\sqrt{245}}{\sqrt{245}} \text{ or } \frac{14 \sqrt{245}}{245} \text{ or } \frac{14 \times 7\sqrt{5}}{245}$ Note: $2\sqrt{5}$ A1 For simplifying $\sqrt{245}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                               |
| To rationalise $\frac{14}{\sqrt{245}}$ accept $\frac{14}{\sqrt{245}} \times \frac{\sqrt{245}}{\sqrt{245}}$ or $\frac{14\sqrt{245}}{245}$ $\frac{14\sqrt{245}}{5}$ for rationalising the NB: The solution means the normalising the NB: The solution means the normalise $\frac{2}{\sqrt{5}}$ or $\frac{14}{\sqrt{5}}$ , etc. only acceptNB: Do not accept sufficient method for denominator. $\frac{2}{\sqrt{5}} \times \frac{\sqrt{5}}{\sqrt{5}}$ or $\frac{14}{7\sqrt{5}} \times \frac{\sqrt{5}}{\sqrt{5}}$ etc.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | e denominator.<br>must be fully $\frac{2}{\sqrt{5}} = \frac{2\sqrt{5}}{5}$ as |
| (c) $e^2 - 2e\sqrt{3} - 2e\sqrt{3} + (2\sqrt{3})^2$ or<br>$e^2 - 4e\sqrt{3} + 12$<br>e = 5<br>f = 37<br>(c) $e^2 - 2e\sqrt{3} - 2e\sqrt{3} + (2\sqrt{3})^2$ or<br>$e^2 - 2e\sqrt{3} + (2\sqrt{3})^2$ or<br>e = 5<br>f = 37<br>(c) M1 Expand brackets wi<br>with correct signs<br>$Eg e^2 - 4e\sqrt{3} or e^2 - e^2 - 2e\sqrt{3} + 12$ , etc of<br>all 4 correct terms w<br>$eg e^2, 4e\sqrt{3}, 12 or e^2$<br>A1 cao<br>A1 cao                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $-2e\sqrt{3} - 2e\sqrt{3}$ or<br>or<br>with signs missing                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Total 8 marks                                                                 |

| 20. | $(AC^2 =) 8^2 + 8^2 - 2 \times 8 \times 8\cos 120^\circ \text{ or } (AC^2 =) 192 \text{ oe or}$                                                                                                                                                                                                                                                                                                                                                                                                                             |      |   | M1             | Allow 6.92(820) rounded or<br>truncated to at least 3 significant<br>figures.                                                                                                                                      |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | $\frac{AC}{\sin 120^{\circ}} = \frac{8}{\sin 30} \text{ oe or}$ $8\cos(30^{\circ}) \text{ or } 8\sin(60^{\circ}) \text{ or } 4\sqrt{3} \text{ or } 6.92(820) \text{ oe}$ $(AC =) 2 \times 8\sin(60^{\circ}) \text{ oe } \text{ or } (AC =) 2 \times 8\cos(30^{\circ}) \text{ oe or}$ $(AC =) \frac{8}{\sin 30} \times \sin 120 \text{ oe or}$ $(AC =) \sqrt{8^{2} + 8^{2} - 2 \times 8 \times 8\cos 120^{\circ}} \text{ or } \sqrt{128 + 64} \text{ or}$ $\sqrt{192} \text{ or } 8\sqrt{3} \text{ or } 13.8(56) \text{ oe}$ |      |   | M1             | Allow 13.8(5640646) rounded or<br>truncated to at least 3 significant<br>figures.<br>Implies first M1                                                                                                              |
|     | $(\operatorname{arc} ABC) = \frac{120}{360} \times 2 \pi \times 8 \text{ or}$ $(\operatorname{arc} ABC) = \frac{120}{360} \times \pi \times 16 \text{ or}$ $(\operatorname{arc} ABC) = \frac{2 \pi \times 8}{3} \text{ or } \frac{\pi \times 16}{3} \text{ oe or } 16.7(55)$ "13.8(56)" + "16.7(55)"                                                                                                                                                                                                                        | 30.6 | 5 | M1<br>M1<br>A1 | For attempting to find the length of<br>arc <i>ABC</i><br>Allow 16.7(5516082) rounded or<br>truncated to at least 3 significant<br>figures.<br>dep on first and third method marks<br>Accept 30.6 - 30.7 inclusive |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 50.0 | 5 |                | Total 5 marks                                                                                                                                                                                                      |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |   |                | i viai 5 Illal Ks                                                                                                                                                                                                  |

| <b>21.</b> (a) | $(-)\frac{16}{x} = (-)16x^{-1}$                                           |                       |   | M1 For $16x^{-1}$ or $-16x^{-1}$                                                                                                              |
|----------------|---------------------------------------------------------------------------|-----------------------|---|-----------------------------------------------------------------------------------------------------------------------------------------------|
|                |                                                                           | $2x + \frac{16}{x^2}$ | 3 | M1 For $\pm 16x^{-2}$ or $\pm \frac{16}{x^2}$ or $2x$<br>A1 Allow $2x + 16x^{-2}$<br>M2A0 for an incorrect answer that<br>includes $16x^{-2}$ |
| (b)            | $2x + \frac{16}{x^2} = 0$<br>2x <sup>3</sup> = -16 or x <sup>3</sup> = -8 |                       |   | M1 ft from (a)<br>Do not accept $x^2 - 16x^{-1} = 0$ oe                                                                                       |
|                | $2x^3 = -16$ or $x^3 = -8$                                                |                       |   | M1 For a correct equation in x <sup>3</sup><br>NB: No ft allowed                                                                              |
|                | x = -2                                                                    |                       |   | A1 For $x = -2$<br>Accept as part of an incorrect<br>coordinate, eg (-2,10)                                                                   |
|                |                                                                           | (-2,12)               | 4 | A1 Accept $x = -2, y = 12$                                                                                                                    |
|                |                                                                           |                       |   | Total 7 marks                                                                                                                                 |

www.xtrapapers.com

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom