

Mark Scheme (Results)

January 2019

Pearson Edexcel International GCSE Mathematics A (4MA0) Higher Tier Paper 4HR

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: <u>www.pearson.com/uk</u>

January 2019 Publications Code 4MA0_4HR_1901_MS All the material in this publication is copyright © Pearson Education Ltd 2019

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme.

Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.

- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

• Types of mark

- o M marks: method marks
- A marks: accuracy marks
- B marks: unconditional accuracy marks (independent of M marks)

• Abbreviations

- o cao correct answer only
- o ft follow through
- o isw ignore subsequent working
- o SC special case
- oe or equivalent (and appropriate)
- dep dependent
- o indep independent
- o eeoo each error or omission

• No working

If no working is shown then correct answers normally score full marks

If no working is shown then incorrect (even though nearly correct) answers score no marks.

• With working

If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.

If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.

If a candidate misreads a number from the question. Eg. uses 252 instead of 255; method marks may be awarded provided the question has not been simplified. Examiners should send any instance of a suspected misread to review. If there is a choice of methods shown, then no marks should be awarded, unless the answer on the answer line makes clear the method that has been used.

If there is no answer on the answer line then check the working for an obvious answer.

• Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct.

It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.

Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

• Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded in another

The correct	The correct answer, unless clearly, obtained by an incorrect method, should be taken to imply a correct method with the exception of Q5a, 7, 12a, 16,				
19 and 20					
Question	Working	Answer	Mark	Notes	
1 (a)	15400×63.21	973 434		M1	
			2	A1	
(b)	240			M1	
(0)	$\frac{210}{15400} \times 100$	1.56	2	A1 1 558441 Accept 1.558 \rightarrow 1.56 inc	
2		1.00	-		
2	$\sqrt{400} = 20$				
	$\pi \times 20'$ oe			MI dep	
		62.8	3	A1 62.83185 Accept $62.8 \rightarrow 62.9$ inc.	
3	$40 \text{ min} - \frac{40}{10} \text{ hr}$			M1	
	$40 \text{ mm} = \frac{1}{60} \text{ m}$				
	40 0700 11 1				
	$9720 \div 11 - 0$ or $9/20 \div 11.4$			M1 (accept 11.66 or 11.67 or better for 11 40/60)	
		833		A1 833.1428 Accept $833 \rightarrow 833.2$ inc.	
	All. $11 \text{ hr} = 40 \text{ mins} = 11 \times 60 \pm 40 = 700 \text{ min}$				
	$11 \text{ mr} 40 \text{ mms} = 11 \times 60 + 40 = 700 \text{ mm}$			M1	
	$9/20 \div 700 \times 60$			M1	
		833	3	A1 833.1428 Accept $833 \rightarrow 833.2$ inc.	
				NB Answer of $852(.63)$ or 853 implies $9720 \div 11.4$	
				M1M0A0	
				IVITNUAU	

Question	Working	Answer	Mark	Notes
4 (a)	$472 \div 20$			M1
		23.6	2	A1
(b)	$10.8 \times 100 (= 1080)$			M1 working in cms
	'1080' ÷ 60	10		MI dep
	A 14.	18		A1 (accept 1 : 18 or 18 : 1)
	Alt: $60 \pm 100 = 0.6$			M1 working in motion
	00 - 100 = 0.0 10.8 · '0.6'			M1 dep
	10.8 ÷ 0.0	18	3	$\begin{array}{c} \text{A1 (accept 1: 18 or 18: 1)} \end{array}$
5 (a)	5r - r = 8 + 2	10	5	M2 collecting x terms on one side and all numbers on the
C (u)	3x $x = 0 + 2$			other side (accept $4x = 10$)
				M1 for collecting <i>x</i> terms on one side <u>or</u> all numbers on one
				side (e.g. $6x = 8 + 2$ or $4x = 8 - 2$)
		2.50e		A1 dep on at least M1 Accept $x = 10/4$ or $5/2$
			3	
(1-)		(2 5)	1	D1
(6)		t(3-5y)	1	ВТ
(c)		k^6	1	B1
(0)		ĸ	1	
(d)	5 2 $5h-2h$			M1 for a correct (but possibly unsimplified) common
	$\frac{1}{2h} - \frac{1}{2h} = \frac{1}{2h} + \frac{1}{2h \times h}$			denominator
		$\frac{3}{2h}$		
		211	2	
				AI

Question	Working	Answer	Mark	Notes
6	$9^2 - 6^2$ (=45) $\sqrt{(9^2 - 6^2)}$ (= $\sqrt{45}$)	6.71	3	M1 or $9^2 = h^2 + 6^2$ or for a complete method to find an unknown angle, x (correct to 1 d.p) in the triangle e.g. $\cos^{-1}(6/9) (= 48.2^{\circ})$ or $\sin^{-1}(6/9) (= 41.8^{\circ})$ M1 for a complete method, using x, to find h e.g. $6 \times \tan 48.2^{\circ}$ A1 Accept $6.7 \rightarrow 6.71$ inc.
7	$\frac{9}{4}$ $\frac{9}{4} \times \frac{5}{6} = \frac{45}{24}$ $\frac{45}{24} = 1\frac{21}{24} \text{ or } \frac{45}{24} \text{ cancelled down to } \frac{15}{8}$ Alt: $\frac{9}{4}$ cancelling 9 and 6 to get $\frac{3}{4} \times \frac{5}{2} = \frac{15}{8}$		3	M1 converting $2\frac{1}{4}$ into an improper fraction (e.g. $\frac{9}{4}$) M1 A1 dep M2 M1 converting $2\frac{1}{4}$ into an improper fraction (e.g. $\frac{9}{4}$) M1 A1 (dep M2)

Question	Working	Answer	Mark	Notes
8	$6 \times 12 (=72) \text{ or } 0.5 \times 7 \times 4 (=14)$ or $6 \times 5 (=30) \text{ or } 7 \times 6 (=42)$ $0.5 \times \{6+10\} \times 7 (=56)$			M1 for any correct calculation of a component of the cross- section (i.e. leading to 72 or 14 or 30 or 56 or 42)
	'30' + '42' +'14' or '72' +'14' or '30' + '56'			M1 dep correct cross-section components added to get total cross section (=86)
	'86' × 25 Alt: 6×12×25 (=1800) or 0.5×7×4×25	2150		M1 (dep on previous M1) A1 cao M1 for any correct calculation seen of one volume block (i.e. leading to 1800 or 350 or 750 or 1050 or 1400) (M2 for any two correct volume calculations seen)
	(=350) or $6 \times 5 \times 25$ (=750) or $7 \times 6 \times 25$ (=1050) or $0.5 \times \{6+10\} \times 7$ (=1400) '1800'+ '350' or '750' + '1400' or '750' + '1050' + '250'	2150	4	M1 (dep on previous M2) correct volume components selected to be added A1
	01 / 50 + 1050 + 550			

Question	Working	Answer	Mark	Notes
9	$120 \times 50 \ (= 6000)$			M1 cost price
	$120 \times \frac{3}{4} \times 80 \ (=7200) \ \text{or} \ 120 \times \frac{1}{4} \times 40$			M1 part profits
	(=1200)			M1 dep on M2
	('7200' + '1200' – '6000') ÷ '6000' ×	40		A1
	or ({ $^{7200} + ^{1200}$ } ÷ $^{6000} - 1$) × 100			M1 cost price M1 profit or loss
	Alt: 120 × 50 (= 6000)			
	$120 \times \frac{3}{4} \times (80 - 50) \ (=2700) \ \text{or}$			M1 dep on M2
	$120 \times \frac{1}{4} \times (40 - 50) (= -300)$	40	4	A1
	('2700' + ' – 300') ÷ '6000' × 100			
10 (a)		1,3,5,7,8,9,10	1	B1
(b)		3, 9	1	B1
(c)		e.g. 1,2,4,5	2	B2 any set of 4 elements , one of which is 5 and the other three are from {1, 2, 3, 4, 6} (no repeats) If not B2 then B1 for either any set of 4 elements, from {1, 2, 3, 4, 6}(no repeats) or 5 and the other three are from {6, 7, 8, 9, 10} (no
				repeats)

Question	Working	Answer	Mark	Notes
11 (a)				M1 10 $n + k$ oe (k any integer \neq 1)
		10 <i>n</i> +1	2	A1
(b)		(x-6)(x-1)		B2 cao
			2	If not B2 then B1 for $(x - a)(x - b)$ with $ab = 6$ or $a + b =$
				±7
	(-2) = 0 = (-2) = (-2			M1 for 4 compations evoluting signs on 2 compations
(C)	$6e^2 - 9ef - 8ef + 12f^2$			with correct terms excluding signs of 3 correct terms
		(-2) 17-(+1) (2)	2	with correct signs
10()	20. 20. 20. 20. 26. 26. 27. 27. 40	$6e^2 - 1/ef + 12f^2$	2	
12 (a)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			M1 ordering all 11 numbers correctly
	41 42			M1 identifying 32 as LQ and 40 as UQ
	40 - 32	8	3	A1 dependent on M1
(b)				M1 identifying 11 th data item in a new (correct) ordered
(0)		12	2	list
		+2	2	A1 (no working read)
13 (a)	5 5 + CE			7 3
13 (a)	$\frac{3}{4} = \frac{3+CL}{7}$ oe	3 75oe	2	M1 accept $(\frac{7}{4} \times 5 - 5)$ or $\frac{3}{4} \times 5$
	4 /	5.7500	Z	4 4
(h)	4 > 2			AI M1
(0)	$ASF = \left(\frac{7}{7}\right)^{2} (= 3.0625)$			
	(-5.0025)	16.5		M1 complete method
	'3.0625' × 8 – 8 oe	10.3	3	A1

Question	Working	Answer	Mark	Notes
14	$1000\pi = 2\pi \times 10^2 + 2\pi \times 10h + \pi \times 10^2$ oe	35	3	M2 (π as a decimal: $3140 \rightarrow 3143 = 628 \rightarrow 629 + (62.8 \rightarrow 62.9)h + 314$) If not M2 then M1 for SA of hemisphere $= 2\pi \times 10^2$ ($= 200\pi$ oe) or for <u>TSA</u> of cylinder $= 2\pi \times 10h + \pi \times 10^2$ ($= 20\pi h + 100\pi$ oe) A1
15 (a) (b) (c)	3/10 oe and label g or green Three extra branches drawn All labels and values correct on six branches $7/10 \times 6/10'$ oe P(RR) + P(RG) + P(GR) $= 7/10 \times 4/10' + 7/10 \times 6/10' + 3/10' \times 4/10'$ Alt: 1 P(CC)	0.42 oe	3 2	 B1 correct label and value for first green branch B1 correct binary structure B1 see diagram at end M1 ft from td with correctly labelled 2nd green branch A1 M2 ft from td 3 correctly labelled branches with an intention to add If not M2 then M1 for any 2 correctly labelled branches (ft from td) with an intention to add
	$= 1 - 3/10' \times 6/10'$	0.82 oe	3	M2 ft from td 2 correctly labelled branches If not M2 then M1 for ' $3/10$ ' × ' $6/10$ ' (ft from td) A1
16	$x^{2} < 16 \text{ or } x^{2} < 32/2$ $\pm 4 \text{ or } \pm \sqrt{16} \text{ or } (x - 4)(x + 4)$	- 4 < <i>x</i> < 4	4	M1 accept $x^2 = 16$ or $x^2 - 16 = 0$ or $x^2 - 16 < 0$ or $(x + 4)(x - 4) = 0$ or > 0 ignore \le in place of $<$ at this stage. B1 (must see \pm) A2 accept $x < 4$ and $x > -4$ if not A2 then A1 for $x < 4$ or $x > -4$ A marks dep on M1

Question	Working	Answer	Mark	Notes
17	Either $BAD = 180 - 112$ (=68) or			M1 A1 can be marked on diagram (must be associated
	(reflex) $BOD = 2 \times 112$ (=224)			with correct angle)
	Either $ABD = 90$ or (obtuse) $BOD = 136$ or BOA = 44			A1 2 nd angle calculated
		22		A1 angle <i>ADB</i>
	Alt:			B1 fully correct reasons for their paths
				NB: This is the most economical method (only requires 2
	ACD = 90 (Angles in a semicircle)			reasons)
	ACB = 112 - 90 = 22			A1
	ADB = 22 (Angles in the same			M1 A1
	segment / angles from the same			A1 + B1 for both reasons
	chord)			Deserves
				Reasons: Opposite angles in a qualic quadrilateral add up to 180
				degrees
				Angles in a semicircle = 90 degrees / right angle or triangle
				with a diameter has a right angle / 90 degrees
				Angles in a triangle add up to 180 degrees
				<u>Angles at centre = $2 \times$ angles at circumference</u>
				Base angles in an isosceles triangle are equal
			5	Angles on a straight line add up to <u>180</u> degrees
				Angles in the same segment / Angles from the same chord
				are equal NR: Received the condition of the set $CDD \neq 34$ but this still
				gives correct answer

Question	Working	Answer	Mark	Notes
18 (a)	ds 1 $2c/r^2$			M1 for 1 or $-36/t^2$ Do <u>not</u> accept (+)36/t ² or 1 from
	$\frac{dt}{dt} = 1 - 36/t^{-1}$			dividing <i>s</i> by <i>t</i>
		$1 - 36/t^2$		
			2	A1
(b)	$(1-36/t^2) = 0$			
	$t^2 = 36$			M1 ft part (a) = 0 followed by isolating t or t^2
		6	2	A1 cao (ignore answer of –6)
(c)	$dv = 2 \epsilon (t)^3$			M1 ft (a)
	$\frac{dt}{dt} = 2 \times 36 / t$	9	2	A1 cao
19	$x^2 + (8 - 2x)^2 = 29$			M1 substitution for y
	$x^2 + 64 - 32x + 4x^2 = 29$			M1 (indep) correct expansion of $(8 - 2x)^2$
	$5x^2 - 32x + 35 = 0$			A1 correct 3 term quadratic $= 0$
	(x-5)(5x-7)' (= 0)			M1ft or formula $\frac{-(-)32 \pm \sqrt{(-32)^2 - 4 \times 5 \times 35}}{2 \times 5}$ or better
				NB. 1 method mark can be awarded here for solving a 3
	x = 5, x = 1.4	x = 5, y = -		term quadratic provided the first M1 has been awared.
		2		A1 Correct two x values or correct two y values
		x = 1.4, y =		A1 Correct pairing. Accept $y = 26/5$, $x = 7/5$, (1.4, 5.2) or
		5.2	6	(7/5, 26/5)
				(both A marks dep on first 2 method marks)
20	$(2^2)^n \times (2^3)^{n+1} = 24 \text{ or } 4^n \times (4)^{1.5(n+1)} = 4^2$			M1 Expressing all 3 terms as powers of 2 or powers of 4
	2n+3(n+1) = 4 or $n+1.5(n+1) = 2$			M1
		0.2	3	A1 dep on M2

Question	Working	Answer	Mark	Notes
21	$10 \times 1 + 20 \times 1.7 + 30 \times 2 + 20 \times 0.8$			M1 calculating areas of existing 4 bars
	$(= 10 + 34 + 60 + 16 = 120)$ $\frac{(110 - 90) \times h}{"120" + (110 - 90) \times h} \times 100 = 4 \text{ oe}$ $2000h = 4(``120" + 20h)$ $h = 0.25$	Bar drawn		M1 dep setting up equation for height of bar $0.04 \times [(120 + (110 - 90)h] = (110 - 90)h$ 4.8 + 0.8h = 20h A1 calculated height (fd) of 110 ~ 90 bar A1 bar at height 0.25 and width 20
	Alt: $10 \times 1 + 20 \times 1.7 + 30 \times 2 + 20 \times 0.8$ (= 10 + 34 + 60 + 16 = 120) $\frac{x}{"120"+x} \times 100 = 4$ oe			M1 calculating areas of existing 4 bars M1 dep setting up equation / calculation for freq of $90 \rightarrow 110$ bar or total freq) $0.04 \times [(120) + x] = x$ or $(x =)$
	100x = 4('120' + x) x = 5 or 125	Bar drawn		$\frac{120}{96} \times 4 \text{ or } (x =) \frac{120}{96} \times 100$ $\frac{120}{96} \times 4 \text{ or } (x =) \frac{120}{96} \times 100$ $4.8 + 0.04x = x$ A1 calculated freq of 110 ~ 90 bar or total frequency A1 bar at height 0.25 and width 20
	Alt: $5 \times 10 + 10 \times 17 + 15 \times 20 + 10 \times 8$ (= 50 + 170 + 300 + 80 = 600) $\frac{600}{96} \times 4$ (small squares) = 25	Bar drawn	4	M1 calculating number of existing small squares M1 calculating number of small squares for 4% A1 A1 bar at height 0.25 and width 20
	Alt: 2 + 6.8 + 12 + 3.2 (= 24) $\frac{24}{96} \times 4 \text{ (big squares)} = 1$			M1 calculating number of existing big squares M1 calculating number of big squares for 4% A1 A1 bar at height 0.25 and width 20

$\frac{\frac{2x-1}{(x-1)(3x-2)}}{\frac{2x^2-x}{(x-1)}} \text{ or } \frac{\frac{2x-1}{(x-1)(3x-2)}}{\frac{x(2x-1)}{(x-1)}}$			
Alt: $1 - \frac{a + \frac{1}{b}}{a + \frac{1}{c}} = 1 - \frac{\frac{ab + 1}{b}}{\frac{ac + 1}{c}}$ $1 - \frac{c(ab + 1)}{b(ac + 1)}$ $b - c$			M1 M1 M1 expressing as a single fraction in <i>a,b,c</i>
$ \frac{\overline{b(ac+1)}}{(3x-2)-(x-1)} \\ \frac{(3x-2)(2x^2-x)}{(3x-2)(2x-1)} $	$\frac{1}{3x^2 - 2x}$	5	M1 expressing as a single fraction fully factorised A1 accept $\frac{1}{x(3x-2)}$

