

Mark Scheme (Results)

January 2014

Pearson Edexcel International GCSE Mathematics A (4MA0/4H) Paper 4H

Pearson Edexcel Certificate Mathematics A (KMA0/4H) Paper 4H

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2014 Publications Code UG037788 All the material in this publication is copyright © Pearson Education Ltd 2014

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme.

Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.

- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

• Types of mark

- M marks: method marks
- A marks: accuracy marks
- B marks: unconditional accuracy marks (independent of M marks)

• Abbreviations

- cao correct answer only
- \circ ft follow through
- isw ignore subsequent working
- SC special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- eeoo each error or omission
- \circ awrt anything which rounds to

• No working

If no working is shown then correct answers normally score full marks If no working is shown then incorrect (even though nearly correct) answers score no marks.

• With working

If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.

If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.

Any case of suspected misread loses A (and B) marks on that part, but can gain the M marks.

If working is crossed out and still legible, then it should be given any appropriate marks, as long as it has not been replaced by alternative work.

If there is a choice of methods shown, then no marks should be awarded, unless the answer on the answer line makes clear the method that has been used.

If there is no answer on the answer line then check the working for an obvious answer.

• Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct.

It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.

Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

• Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded in another.

Question	Working	Answer	Mark		Notes	
Apart from que	stions 3, 15(a), 18(a) and 20, (where the state of the st	he mark scheme states otherwi	se) the co	brrect and	swer, unless clearly obtained from an incorrect r	method, should
be taken to imp	ly a correct method.		,			,
1. (a)	840 : 40 oe or 840 \div 40 oe or 1 : 21			M1		
		21	2	A1	Accept 21 : 1	
(b)	$(105 \div 3) \times 2$			M1	M1 for 105 ÷ 3 (=35)	
		70	2	A1		
(c)	$(105 \div \{4+3\}) \times 3$			M1	M1 for 105 ÷ (4+3) (=15)	
		45	2	A1		
						Total 6 marks
			1	T = = .		
2. (a)	$0.5 \times (11 + 7) \times 10$			M1	M1 for $(0.5 \times 2 \times 10) + (7 \times 10) + (0.5 \times 2 \times 10)$	J)
<u> </u>	((0.0)) (0.0)	90	2	Al		
(b)	"90" x 12	1000		M1 ft	Their area in (a) x 12	
		1080	2	Al ft		
						Total 4 marks
2	10 . 20 . 20			M1	M1 for a second se	
3.	18y + 30 = 39 or $3y + 5 = 6.518y - 20$ 20 or $3y - 6.5$			M1 M1	M1 for correct expansion $\{18y + 30\}$	
	18y = 39 = 30 or $3y = 0.3 = 3$	0.5 09	3		Dependent on at least one M1	
		0.5 00	5		Dependent on at least one W1	Total 3 marks
						Total 5 marks
4	$(0x^2) + 1x^{10} + 2x^{7} + 3x^{6} + 4x^{3} + 5x^{6}$	0		M1	M1 for 5 correct products stated or evaluated	
	(642) + 1010 + 200 + 1000 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 100 +			M1	Dependent on first M1	
		2.13 rec oe	3	A1	Accept 2.1 or better with no working.	
			-		Accept 2 if M2 awarded.	
						Total 3 marks
5.		rotation		B1		
		90° clockwise or -90°		B1	accept 270° or 270° anticlockwise.	
		$\{\text{centre}\}\ (0,0) \text{ or } O \text{ or origin}$	3	B1	Award no marks if multiple transformations.	
					condone lack of brackets around 0,0	
						Total 3 marks

6. (a)		k^{5}	1	B1	
(b)	1	14t - 6	1	B1	Mark response on answer line or final statement in body of
					script, do not isw.
(c) (i)	8y + 24 - 6	y + 21		M1	M1 for 3 terms with correct signs or 4 terms without signs
	2	y + 45	2	A1	Mark response on answer line or final statement in body of
					script, do not isw.
(c) (ii)	$x^2 - 6x - 4$	x + 24		M1	M1 for 3 terms with correct signs or 4 terms without signs
	$x^2 - 10$	x + 24	2	A1	Mark response on answer line or final statement in body of
					script, do not isw.
(d)				M1	or v^7 / v or $v^4 \times v^2$ or v^{11} / v^5
		v^6	2	A1	
					Total 8 marks

7.	3.2 x 3.2 (= 10.24)			M1	Area of square.
	$\pi \times 5^2$ (= 78.5) { π = 3.14 or better}			M1	Area of circle, accept awrt $78.5 \rightarrow 78.6$ incl.
	$\pi \times 5^2 - 3.2 \times 3.2$			M1	Intention to subtract areas from correct methods.
		68.3	4	A1	Accept awrt 68.3 or 68.4
					Total 4 marks

8.	Fully correct factor tree or repeated division to			M2	Factors must multiply to 825
	reach prime factors (condone inclusion of 1's)				
	or 3, 5, 5, 11				
	or 3 x 5 x 5 x 11 x 1				
					If not M2 then M1 for correct but incomplete factor tree/
					division ladder which includes 2 different primes.
					(e.g. 25 x 3 x 11)
		3 x 5 x 5 x 11	3	A1 ca	ao Accept $3 \times 5^2 \times 11$ and dots in place of multiplication signs.
					Total 3 marks

9 . (a) (i)	6 12	1	B1		
(a) (ii)	2, 3, 5, 6, 7,	1	B1	Withhold mark for repeat elements.	
	9, 11, 12			*	
(b)	No				
	Universal set has only numbers less than 13	1	B1	Dependent on "No" box indicated.	
				(idea that 14 does not belong to \mathcal{E})	
				Total 3 mar	ĸs

				Total 3 marks
		1.8	3	A1
	(Sum of their 3 numbers) \div 3			M1 Correct full calculation which would lead to correct answer.
	5.4			
	or any 3 numbers that have a total of			
	a total 10.4			
	Any 4 numbers (including 5) that have			M1
	Alternative solution:			
		1.8	3	A1 cao
	$(4 \times 2.6 - 5) \div 3$			M1 Correct full calculation which would lead to correct answer.
10.	4 x 2.6 (= 10.4)			M1 or 5.4 seen.

11. (a)			Algeria	1	B1	Accept 2.38 x 10^6	
(b)	$1.13 \times 10^{6} + 2.38 \times 10^{6} + 9.24 \times 10^{5} + 5.83 \times 10^{5}$				M1	Intention to add 4 correct values.	
	or digits 5017	digits 5017					
			5.017×10^{6}	2	A1	accept 5 x 10^6 or better	
(c)	$7.91 \times 10^7 \div 1.13 \times 10^6$				M1		
			70 oe	2	A1		
							Total 5 marks

12.	(DBC =) 60 - x			B1	Can be marked on diagram.
	(Angles in an) <u>equilateral</u> triangle (= 60 degrees)				{Reason 1}
	BDC = 60 - x or $BCD = 60 + 2x$ oe			B1	Can be marked on diagram.
	Base/bottom angles in an isosceles triangle (are			B1	{Reason 2} both reasons 1 and 2 needed for B1
	equal)				
	(BCD =) 60 + 2x		4	Can be	e marked on diagram.
		2x		B1	Answer only $=$ B3.
					Numerical methods leading to a numerical answer can only
					score B1 (for giving both reasons adequately).
	Alternative: {Call ACD "y"}				
	(BDC and DBC =) 60 - "y"/2			B2	B2 for both (<i>BDC</i> and <i>DBC</i> =) $60 - y/2$
					B1 for either (<i>BDC</i> or <i>DBC</i> =) $60 - y/2$
					Can be marked on diagram.
	Base/bottom angles in an isosceles triangle (are				{Reason 1}
	equal)				
	x + (60 - y''/2) = 60 oe				i.e. Angle ABC is 60
	(Angles in an) <u>equilateral triangle</u> (= 60 degrees)			B1	{Reason 2} both reasons needed for B1
		2x	4	B1	Answer only $=$ B3.
					Numerical methods leading to a numerical answer can only
					score B1 (for giving both reasons adequately).
					Total 4 marks

13.	$(x-5){4(x-5)+3}$			M1	Accept $(x-5)$ { $4x-20+3$ } or reaching $4x^2 - 37x + 85$
		(x-5)(4x-17)	2	A1	
					Total 2 marks

14. (a)			0.3 in first	t fail branch		B1	
		0.8, 0.2 in second attempt pass, fail branches			2	B1	Branches must be labelled. Ignore extra branches leading from "nass"
(b)	"0.3" x 0.8		<u> </u>			M1ft	
				0.24 oe	2	A1	
(c)	("0.3" x "0.2" x 0.8	3) + ("0.3"x "0.2"x "0.2	2"x 0.8) oe			M2ft	M1ft for "0.3" x "0.2" x 0.8 (=0.048)
							or "0.3" x "0.2" x "0.2" x 0.8 (=0.0096)
			0.0576 oe		3	A1	Accept 36/625
							Total 7 marks

15. (a) (i)	3x + 2y = 120			B1
	2y = 120 - 3x or $1.5x + y = 60$		2	B1 dependent on first B1
		y = 0.5 (120 - 3x) *		* Answer given on question paper.
(ii)	$A = x \times y$			
	$A = x \times (60 - 1.5x)$		1	B1
		$A = 60x - 1.5x^2 *$		* Answer given on question paper.
(b)		(dA / dx =) 60 - 3x	2	B2 If not B2 then B1 for 60 or $-3x$
(c)	60 - 3x'' = 0			M1ft
	x = 20: (y = 30)			A1
	$A = 20 \times 30 \text{ or } 60 \times 20 - 1.5 \times 20^2$			
		600	3	A1 cao Answer only = $M1A2$ (full marks)
				Total 8 marks

16.				M1 Correct fd calculated (or marked on vertical axis with no
				contradictions).
				or $28 \div 2$ or 14
				or 32, 20, 12 frequencies assigned to correct blocks.
				or $1 \text{ cm}^2 = 4$ customers oe
				or 1 small square = 0.16 customers oe
	(8x4)+(5x4)+(3x4)			M1 Correct calculations to give 3 correct frequencies with the
	or $0.16(\{5x40\}+\{10x12.5\}+\{30x2.5\})$	64	3	intention to add $(32 + 20 + 12)$
				A1 cao
				Total 3 mark

17.	5 x (360 ÷ 12) (= 150)			M1 Angle <i>AOB</i> .
	$(AB^2 =) 10^2 + 7^2 - 2 \times 10 \times 7 \times \cos (``150'')$			M1 Accept the use of the cosine rule with any angle but sides
	$(AB^2 =)149 - 140 \cos (``150'')$			(10 and 7) must be in correct places.
	$(AB^2 =) 270.24$			A1 awrt 270
		16.4	4	A1 awrt 16.4
				Total 4 marks
18. (a)	(3x+2)(2x+1) = 100			M1 or $(2x \times 3x) + 2(2x + 1) + 3x = 100$ oe
			2	or $(2x \times 3x) + (2 \times 2x (x1)) + 1) + 3x + 1 + 1 = 100$ oe
				other partitions are acceptable but partitioning must go on
				to form a correct equation.
	$6x^2 + 4x + 3x + 2 = 100$			A1 Accept $6x^2 + 7x + 2 = 100$ if M1 awarded
		$6x^2 + 7x - 98 = 0 *$		* Answer given
(b)	(3x+14)(2x-7) (= 0)			$(-7 \pm \sqrt{49} + 2352)$ $(-7 \pm \sqrt{2401})$
				M2 or $(x=) - \frac{12}{12}$ or $(x=) - \frac{12}{12}$
				If not M2 then M1 for $(3r + 14)(2r + 7)$
				$= \sqrt{-2} + \frac{1}{\sqrt{-2}}$
				or $(x =) \frac{-7 \pm \sqrt{7^2 - 4 \times 6 \times -98}}{-98}$
	r = 3.5			2×6
	$(\Lambda rop -) 6 \times "25"^2 \text{ or } (2 \times "25) \times (2 \times "25')$	")		condone + in place of \pm and 1 sign error.
	$\left[(Aica -) \circ x 5.5 0i (5 \ X 5.5) \times (2 \ X 5.5) \right]$	735	5	A1 Dependent on at least M1 Ignore negative root.
		13.3	5	M1ft Dependent on at least M1 and $x > 0$
				A1 cao Dependent on first M1
				Total 7 marks

19.	180 ÷ (1 + 7) (= 22.5) 360 ÷ "22.5"	16	3	M1 M1ft dep M2 for $\frac{180(n-2)}{n} = \frac{7 \times 180}{8}$ or $\frac{7 \times 360}{n}$ or M2 for $360 \div \frac{180}{(1+7)}$ A1 cao
				Total 3 marks

20.	(x =) 0.01515 and $(100x =) 1.515$				
	99x = 1.5			M1 or $10x = 0.1515$ and $1000x = 15.1515$ selected	
	15/990 oe		2	A1 but not 1/66 Numerator and denominator have to be integers.	
		1/ 66 *		* Answer given	
				Total 2 marks	
21.	165 ÷ 1250 or 164.9 rec ÷ 1250			M2 M1 for 165 or 164.9 rec or 1250 selected.	
		0.132	3	A1 cao	
				Total 3 marks	

22.	y = 2x - 7			M1	
	$x^2 + 4x^2 - 14x - 14x + 49 = 34$			M2	M1 for $4x^2 - 14x - 14x + 49$ or better
	$5x^2 - 28x + 15 (= 0)$			A1	correct 3 part quadratic
	(5x-3)(x-5) (=0)			M1	or $\frac{-28 \pm \sqrt{(-28)^2 - 4 \times 5 \times 15}}{2 \times 5}$
	$x = 0.6 \ x = 5$				or better or $5x(x-5) - 3(x-5)$
					condone no brackets around negative numbers.
		x = 0.6 & y = -5.8	7	A1	Dependent on previous M1 (both x values correct).
		x = 5 & $y = 3$			
				A1	Dependent on previous M1
					(both complete solutions correct).
	Alt: $x = (y + 7)/2$			M1	
	$0.25 \times (y^2 + 14y + 49) + y^2 = 34$			M2	M1 for 0.25 x (y^2 +14y+49)
	$5y^2 + 14y - 87 = 0$			A1	correct 3 part quadratic
	(y-3) (5y+29) (=0) y=3 y=-5.8			M1	or $\frac{-14 \pm \sqrt{14^2 - 4 \times 5 \times -87}}{2 \times 5}$
					or better or $y(5y+29) - 3(5y+29)$
		x = 0.6 & y = -5.8		A1	Dependent on previous M1 (both y values correct)
		x = 5 & $y = 3$		A1	Dependent on previous M1
					(both complete solutions correct)
					Total 7 marks

23.	$(AC^2 =) 230^2 + 230^2 (= 105800)$			M1	M1 for $(MC^2) = 115^2 + 115^2 (=26450)$
	$(MC =) \frac{1}{2} \sqrt{(105800'')} = 162.6)$			M1	M1 for √("26450") (=162.6)
	$(MT^2 =) 218^2 - "162.6"^2 (=21074)$			M1	or M1 for correct trig working leading to one correct acute angle in MCT {either 41.8 or 48.2}
	$(MT=) \sqrt{21074}$			M1	or M1 for correct trigonometry working leading to correct
					answer
		145	5	A1	Accept awrt 145
					Total 5 marks
					TOTAL FOR PAPER: 100 MARKS

TOTAL FOR PAPER: 100 MARKS			
	·		

www.xtrapapers.com

www.xtrapapers.com

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE