Surname	Other r	names
Pearson Edexcel International GCSE	Centre Number	Candidate Number
Mathema	tics B	
Paper 1		
Thursday 24 May 2018 – N Time: 1 hour 30 minutes	•	Paper Reference 4MB1/01

Instructions

- Use **black** ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.
- Calculators may be used.

Information

- The total mark for this paper is 100.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Check your answers if you have time at the end.
- Without sufficient working, correct answers may be awarded no marks.

Turn over ▶

Answer ALL TWENTY EIGHT questions.

Write your answers in the spaces provided.

You must write down all the stages in your working.

1 The *n*th term of a sequence is given by 5n - 7

Write down the second, third and fourth terms of the sequence.

(Total for Question 1 is 2 marks)

2 The bearing of town A from town B is 054°

Find the bearing of town B from town A.

(Total for Question 2 is 2 marks)

3 At the beginning of the summer, Amrit's weight was 75 kg. At the end of the summer, his weight was 69 kg.

Calculate the percentage loss in Amrit's weight.

.....

(Total for Question 3 is 2 marks)

4 The point A is mapped onto the point (-1, 3) under the translation $\begin{pmatrix} 2 \\ -5 \end{pmatrix}$ Find the coordinates of A.

(.....,

(Total for Question 4 is 2 marks)

BEARING

Write down all the letters of the above word that have

(a) exactly two lines of symmetry

(1)

(b) rotational symmetry of order 2

(1

(Total for Question 5 is 2 marks)

6 Write down which two of the following six numbers are equivalent to irrational numbers.

$$\frac{7}{2}$$

$$2\pi$$

$$6^{\frac{1}{4}}$$

(Total for Question 6 is 2 marks)

7 Without using a calculator and showing all your working, calculate

$$\frac{7}{8} - \left(\frac{1}{3} \times 2\frac{1}{4}\right)$$

Give your answer as a fraction in its simplest form.

(Total for Question 7 is 3 marks)

8 Solve the equation

$$4x + (5.2 \times 10^5) = (7.1 \times 10^7) - 12x$$

Give your answer in standard form.

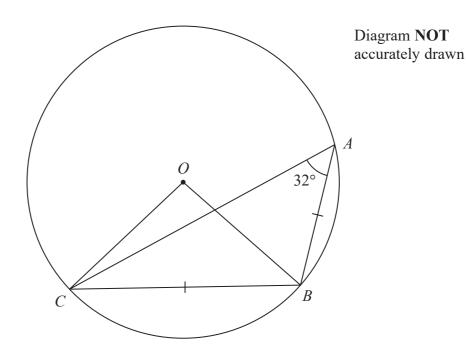
(Total for Question 8 is 3 marks)

9 Showing all your working, express $3\sqrt{180} - 2\sqrt{80}$ in the form $a\sqrt{b}$ where a is an integer and b is a prime number.

(Total for Question 9 is 3 marks)

10 The determinant of the matrix $\begin{pmatrix} 2x & 1 \\ 5x & 4 \end{pmatrix}$ is equal to 9 Find the value of x.

x =


(Total for Question 10 is 3 marks)

11 Express as a single fraction in its simplest form

$$\frac{3}{2x-1} - \frac{4}{x+2}$$

(Total for Question 11 is 3 marks)

ABC is a triangle such that the points A, B and C lie on a circle, centre O.

$$BC = BA$$
 and $\angle CAB = 32^{\circ}$

Find the size, in degrees, of

(a) $\angle COB$

(1)

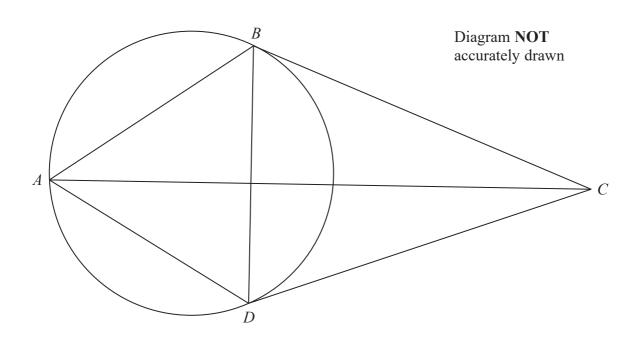
(b) ∠*OCA*

(2)

(Total for Question 12 is 3 marks)

13 Prove that $(4n + 3)^2 - (4n - 3)^2$ is a multiple of 12 for all positive integer values of n.

(Total for Question 13 is 3 marks)


14

$$\mathbf{a} = \begin{pmatrix} 2x - 1 \\ -3 \end{pmatrix}$$

Given that $|\mathbf{a}| = 5$

find the possible values of x.

(Total for Question 14 is 3 marks)

A, B and D are three points on a circle.

The point C is such that CD and CB are tangents to the circle.

$$\angle ADB = \angle ABD$$

Prove that $\triangle ABC$ and $\triangle ADC$ are congruent.

(Total for Question 15 is 3 marks)

16	(a) Simplify $(4x^5)^2$		
	(b) Simplify $(27y^9)^{\frac{4}{3}}$	(2)	
		(2)	
	(Total for Question 16 i	is 4 marks)	
17	The lengths of the sides of a rectangular piece of paper, measured to the nearest n 296 mm and 210 mm.	nm, are	
	Calculate		
	(a) the lower bound, in mm, for the perimeter of the piece of paper,		
	(a) the lower bound, in film, for the permitter of the piece of paper,		
			mm
		(2)	mm
			mm
	(b) the upper bound, to the nearest mm², for the area of the piece of paper.		
	(b) the upper bound, to the nearest mm², for the area of the piece of paper.	(2)	

18 y varies inversely as the cube of x.

$$y = 297 \text{ when } x = \frac{1}{3}$$

Find the value of x^2 when y = 704

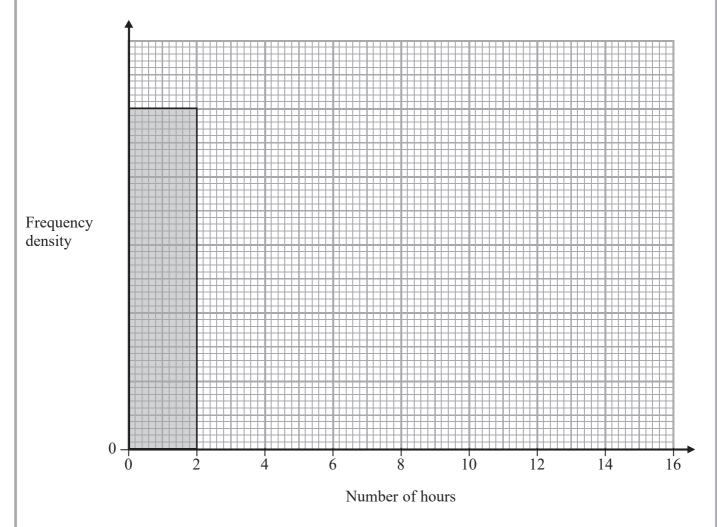
$$\chi^2 =$$

(Total for Question 18 is 4 marks)

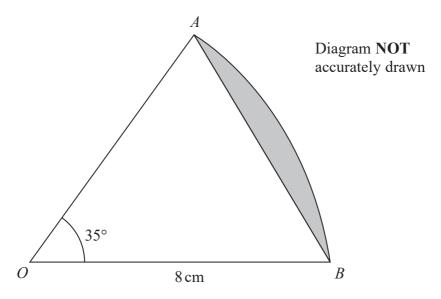
19 Simplify fully

$$\frac{10x + 5y - 2x^2 - xy}{4x^2 - y^2}$$

(Total for Question 19 is 4 marks)



20 The table shows information about the number of hours for which each of 100 children used a computer one week.


Number of hours (h)	Frequency
$0 < h \leqslant 2$	20
$2 < h \leqslant 5$	24
$5 < h \leqslant 8$	12
$8 < h \leqslant 12$	14
$12 < h \leqslant 15$	30

The diagram below is an incomplete histogram representing this information.

Use the information in the table to complete the histogram.

(Total for Question 20 is 4 marks)

The diagram shows a sector, AOB, of a circle centre O and radius 8 cm. The angle AOB is 35°

Find the area, in cm² to 3 significant figures, of the segment shaded in the diagram.

cm

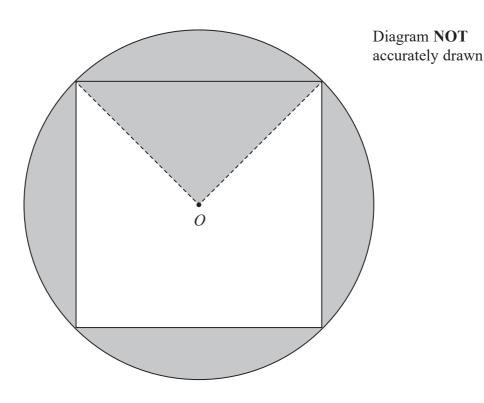
(Total for Question 21 is 4 marks)

22 Two containers, A and B, are mathematically similar.

Container A has a volume of $4500 \,\mathrm{cm^3}$ and a total surface area of $1500 \,\mathrm{cm^2}$ Container B has a volume of $972 \,\mathrm{cm^3}$

Calculate the total surface area, in cm^2 , of container B.

cm


(Total for Question 22 is 4 marks)

23 Jenny has 18 sweets in a bag. There are 11 orange sweets and 7 green sweets in the bag.Jenny takes at random 3 sweets from the bag.Calculate the probability that the 3 sweets are not all of the same colour.

(Total for Question 23 is 4 marks)

The diagram shows a circle and a square. The circle has centre O and diameter $k \, \text{cm}$ and each vertex of the square lies on the circle.

The total area of the regions shown shaded in the diagram is $A \, \mathrm{cm}^2$

(a) Show that $8A = 2\pi k^2 - 3k^2$

(3)

-		~ 4									
(b) Hence	find	an e	expres	sion	for	k in	terms	of A	and	π .

$$k = \dots$$
 (2)

(Total for Question 24 is 5 marks)

25 A particle is moving along a straight line. At time t seconds, the displacement, x metres, of the particle from a fixed point O on the line is given by

$$x = t^3 - 6t^2 + 15t \qquad t \geqslant 0$$

At time t seconds, the acceleration of the particle is $a \text{ m/s}^2$

(a) Find an expression for a in terms of t.

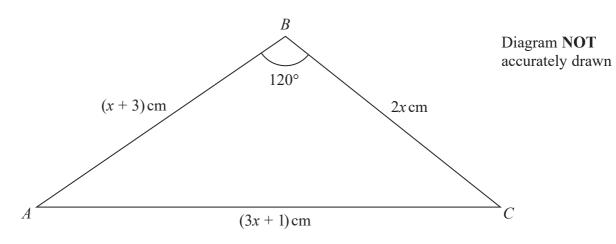
$$a =$$
 (3)

(b) Find the least speed of the particle.

.....m/s

(Total for Question 25 is 5 marks)

- **26** The straight line L has equation 2x + y = 8
 - (a) Find the gradient of L.


(2)

L meets the y-axis at the point A and the x-axis at the point B.

(b) Find the area of triangle AOB, where O is the origin.

(4)

(Total for Question 26 is 6 marks)

The diagram shows triangle ABC in which

$$AB = (x + 3) cm$$

$$BC = 2x cm$$

$$AC = (3x + 1) cm$$

$$\angle ABC = 120^{\circ}$$

Find the size, in degrees to 3 significant figures, of $\angle ACB$.

$\angle ACB =$		
----------------	--	--

(Total for Question 27 is 6 marks)

28 (a) Solve the inequality 4(x-2) < 1 + x

(b) Without using a calculator and showing all your working, solve the inequality $2x^2 \le 7x + 9$

(4)

(c) Hence find the range of values of x for which both

$$4(x-2) < 1 + x$$
 and $2x^2 \le 7x + 9$

(1)

(Total for Question 28 is 7 marks)

TOTAL FOR PAPER IS 100 MARKS